Student Study Guide/Solutions Manual to accompany Organic Chemistry, Fourth Edition

University of Pretoria

http://create.mcgraw-hill.com

Copyright 2014 by McGraw-Hill Education. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without prior written permission of the publisher.

This McGraw-Hill Create text may include materials submitted to McGraw-Hill for publication by the instructor of this course. The instructor is solely responsible for the editorial content of such materials. Instructors retain copyright of these additional materials.

Contents

1. Structure and Bonding 1
2. Acids and Bases 35
3. Introduction to Organic Molecules and Functional Groups 61
4. Alkanes 81
5. Stereochemistry 117
6. Understanding Organic Reactions 145
7. Alkyl Halides and Nucleophilic Substitution 167
8. Alkyl Halides and Elimination Reactions 201
9. Alcohols, Ethers, and Epoxides 233
10. Alkenes 267
11. Alkynes 299
12. Oxidation and Reduction 323
13. Mass Spectrometry and Infrared Spectroscopy 353
14. Nuclear Magnetic Resonance Spectroscopy 371
15. Radical Reactions 397
16. Conjugation, Resonance, and Dienes 425
17. Benzene and Aromatic Compounds 453
18. Reactions of Aromatic Compounds 477
19. Carboxylic Acids and the Acidity of the O-H Bond 517
20. Introduction to Carbonyl Chemistry 539
21. Aldehydes and Ketones-Nucleophilic Addition 573
22. Carboxylic Acids and Their Derivatives-Nucleophilic Acyl Substitution 609
23. Substitution Reactions of Carbonyl Compounds at the a Carbon 645
24. Carbonyl Condensation Reactions 675
25. Amines 707
26. Carbon-Carbon Bond-Forming Reactions in Organic Synthesis 741
27. Pericyclic Reactions 765
28. Carbohydrates 789
29. Amino Acids and Proteins 825
30. Lipids 861
31. Synthetic Polymers 877

Credits

1. Structure and Bonding: Chapter 1 from Student Study Guide/Solutions Manual to accompany Organic Chemistry, Fourth Edition by Smith, Berk, 20141
2. Acids and Bases: Chapter 2 from Student Study Guide/Solutions Manual to accompany Organic Chemistry, Fourth Edition by Smith, Berk, 201435
3. Introduction to Organic Molecules and Functional Groups: Chapter 3 from Student Study Guide/Solutions Manual to accompany Organic Chemistry, Fourth Edition by Smith, Berk, 201461
4. Alkanes: Chapter 4 from Student Study Guide/Solutions Manual to accompany Organic Chemistry, Fourth Edition by Smith, Berk, 201481
5. Stereochemistry: Chapter 5 from Student Study Guide/Solutions Manual to accompany Organic Chemistry, Fourth Edition by Smith, Berk, 2014117
6. Understanding Organic Reactions: Chapter 6 from Student Study Guide/Solutions Manual to accompany Organic Chemistry, Fourth Edition by Smith, Berk, 2014145
7. Alkyl Halides and Nucleophilic Substitution: Chapter 7 from Student Study Guide/Solutions Manual to accompany Organic Chemistry, Fourth Edition by Smith, Berk, 2014167
8. Alkyl Halides and Elimination Reactions: Chapter 8 from Student Study Guide/Solutions Manual to accompany Organic Chemistry, Fourth Edition by Smith, Berk, 2014201
9. Alcohols, Ethers, and Epoxides: Chapter 9 from Student Study Guide/Solutions Manual to accompany Organic Chemistry, Fourth Edition by Smith, Berk, 2014233
10. Alkenes: Chapter 10 from Student Study Guide/Solutions Manual to accompany Organic Chemistry, Fourth Edition by Smith, Berk, 2014267
11. Alkynes: Chapter 11 from Student Study Guide/Solutions Manual to accompany Organic Chemistry, Fourth Edition by Smith, Berk, 2014299
12. Oxidation and Reduction: Chapter 12 from Student Study Guide/Solutions Manual to accompany Organic Chemistry, Fourth Edition by Smith, Berk, 2014323
13. Mass Spectrometry and Infrared Spectroscopy: Chapter 13 from Student Study Guide/Solutions Manual to accompany Organic Chemistry, Fourth Edition by Smith, Berk, 2014353
14. Nuclear Magnetic Resonance Spectroscopy: Chapter 14 from Student Study Guide/Solutions Manual to accompany Organic Chemistry, Fourth Edition by Smith, Berk, 2014371
15. Radical Reactions: Chapter 15 from Student Study Guide/Solutions Manual to accompany Organic Chemistry, Fourth Edition by Smith, Berk, 2014397
16. Conjugation, Resonance, and Dienes: Chapter 16 from Student Study Guide/Solutions Manual to accompany Organic Chemistry, Fourth Edition by Smith, Berk, 2014425
17. Benzene and Aromatic Compounds: Chapter 17 from Student Study Guide/Solutions Manual to accompany Organic Chemistry, Fourth Edition by Smith, Berk, 2014453
18. Reactions of Aromatic Compounds: Chapter 18 from Student Study Guide/Solutions Manual to accompany Organic Chemistry, Fourth Edition by Smith, Berk, 2014477
19. Carboxylic Acids and the Acidity of the O-H Bond: Chapter 19 from Student Study Guide/Solutions Manual to accompany Organic Chemistry, Fourth Edition by Smith, Berk, 2014517
20. Introduction to Carbonyl Chemistry: Chapter 20 from Student Study Guide/Solutions Manual to accompany Organic Chemistry, Fourth Edition by Smith, Berk, 2014539
21. Aldehydes and Ketones-Nucleophilic Addition: Chapter 21 from Student Study Guide/Solutions Manual to accompany Organic Chemistry, Fourth Edition by Smith, Berk, 2014573
22. Carboxylic Acids and Their Derivatives-Nucleophilic Acyl Substitution: Chapter 22 from Student Study Guide/Solutions Manual to accompany Organic Chemistry, Fourth Edition by Smith, Berk, 2014609
23. Substitution Reactions of Carbonyl Compounds at the a Carbon: Chapter 23 from Student Study Guide/Solutions Manual to accompany Organic Chemistry, Fourth Edition by Smith, Berk, 2014645
24. Carbonyl Condensation Reactions: Chapter 24 from Student Study Guide/Solutions Manual to accompany Organic Chemistry, Fourth Edition by Smith, Berk, 2014675
25. Amines: Chapter 25 from Student Study Guide/Solutions Manual to accompany Organic Chemistry, Fourth Edition by Smith, Berk, 2014707
26. Carbon-Carbon Bond-Forming Reactions in Organic Synthesis: Chapter 26 from Student Study Guide/Solutions Manual to accompany Organic Chemistry, Fourth Edition by Smith, Berk, 2014741
27. Pericyclic Reactions: Chapter 27 from Student Study Guide/Solutions Manual to accompany Organic Chemistry, Fourth Edition by Smith, Berk, 2014765
28. Carbohydrates: Chapter 28 from Student Study Guide/Solutions Manual to accompany Organic Chemistry, Fourth Edition by Smith, Berk, 2014789
29. Amino Acids and Proteins: Chapter 29 from Student Study Guide/Solutions Manual to accompany Organic Chemistry, Fourth Edition by Smith, Berk, 2014825
30. Lipids: Chapter 30 from Student Study Guide/Solutions Manual to accompany Organic Chemistry, Fourth Edition by Smith, Berk, 2014861
31. Synthetic Polymers: Chapter 31 from Student Study Guide/Solutions Manual to accompany Organic Chemistry, Fourth Edition by Smith, Berk, 2014877

Chapter 1 Structure and Bonding

Chapter Review

Important facts

- The general rule of bonding: Atoms strive to attain a complete outer shell of valence electrons (Section 1.2). H "wants" 2 electrons. Second-row elements "want" 8 electrons.

- Formal charge (FC) is the difference between the number of valence electrons on an atom and the number of electrons it "owns" (Section 1.3C). See Sample Problem 1.3 for a stepwise example.

- Curved arrow notation shows the movement of an electron pair. The tail of the arrow always begins at an electron pair, either in a bond or a lone pair. The head points to where the electron pair "moves" (Section 1.6).

- Electrostatic potential plots are color-coded maps of electron density, indicating electron rich (red) and electron deficient (blue) regions (Section 1.12).

Chapter 1-2

The importance of Lewis structures (Sections 1.3-1.5)

A properly drawn Lewis structure shows the number of bonds and lone pairs present around each atom in a molecule. In a valid Lewis structure, each H has two electrons, and each second-row element has no more than eight. This is the first step needed to determine many properties of a molecule.

Resonance (Section 1.6)

The basic principles:

- Resonance occurs when a compound cannot be represented by a single Lewis structure.
- Two resonance structures differ only in the position of nonbonded electrons and π bonds.
- The resonance hybrid is the only accurate representation for a resonance-stabilized compound. A hybrid is more stable than any single resonance structure because electron density is delocalized.

The difference between resonance structures and isomers:

- Two isomers differ in the arrangement of both atoms and electrons.
- Resonance structures differ only in the arrangement of electrons.

Geometry and hybridization

The number of groups around an atom determines both its geometry (Section 1.7) and hybridization (Section 1.9).

Number of groups	Geometry	Bond angle (${ }^{\mathbf{0}}$)	Hybridization	Examples
2	linear	180	$s p$	$\mathrm{BeH}_{2}, \mathrm{HC} \equiv \mathrm{CH}$
3	trigonal planar	120	$s p^{2}$	$\mathrm{BF}_{3}, \mathrm{CH}_{2}=\mathrm{CH}_{2}$
4	tetrahedral	109.5	$s p^{3}$	$\mathrm{CH}_{4}, \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}$

Drawing organic molecules (Section 1.8)

- Shorthand methods are used to abbreviate the structure of organic molecules.

- A carbon bonded to four atoms is tetrahedral in shape. The best way to represent a tetrahedron is to draw two bonds in the plane, one in front, and one behind.

Each drawing has two solid lines, one wedge, and one dashed line.

Bond length

- Bond length decreases across a row and increases down a column of the periodic table (Section 1.7A).

Increasing bond length
Increasing bond length

- Bond length decreases as the number of electrons between two nuclei increases (Section 1.11A).

- Bond length increases as the percent s-character decreases (Section 1.11B).

$$
\begin{array}{lll}
\mathrm{Csp}-\mathrm{H} & \mathrm{C} s p^{2}-\mathrm{H} & \mathrm{C}_{s p^{3}-\mathrm{H}}
\end{array}
$$

Increasing bond length

- Bond length and bond strength are inversely related. Shorter bonds are stronger bonds (Section 1.11).

Increasing bond strength

Chapter 1-4

- Sigma (σ) bonds are generally stronger than π bonds (Section 1.10).

Electronegativity and polarity (Sections 1.12, 1.13)

- Electronegativity increases from left to right across a row and decreases down a column of the periodic table.
- A polar bond results when two atoms of different electronegativity are bonded together.

Whenever C or H is bonded to N, O, or any halogen, the bond is polar.

- A polar molecule has either one polar bond, or two or more bond dipoles that reinforce.

Drawing Lewis structures: A shortcut

Chapter 1 devotes a great deal of time to drawing valid Lewis structures. For molecules with many bonds, it may take quite awhile to find acceptable Lewis structures by using trial-and-error to place electrons. Fortunately, a shortcut can be used to figure out how many bonds are present in a molecule.

Shortcut on drawing Lewis structures-Determining the number of bonds:

[1] Count up the number of valence electrons.
[2] Calculate how many electrons are needed if there are no bonds between atoms and every atom has a filled shell of valence electrons; that is, hydrogen gets two electrons, and secondrow elements get eight.
[3] Subtract the number obtained in Step [1] from the sum obtained in Step [2]. This difference tells how many electrons must be shared to give every H two electrons and every secondrow element eight. Since there are two electrons per bond, dividing this difference by two tells how many bonds are needed.

To draw the Lewis structure:

[1] Arrange the atoms as usual.
[2] Count up the number of valence electrons.
[3] Use the shortcut to determine how many bonds are present.
[4] Draw in the two-electron bonds to all the H's first. Then, draw the remaining bonds between other atoms making sure that no second-row element gets more than eight electrons and that you use the total number of bonds determined previously.
[5] Finally, place unshared electron pairs on all atoms that do not have an octet of electrons, and calculate formal charge. You should have now used all the valence electrons determined in the first step.

Example: Draw all valid Lewis structures for $\mathbf{C H}_{3} \mathbf{N C O}$ using the shortcut procedure.

[1] Arrange the atoms.

H
H C N C O H

- In this case the arrangement of atoms is implied by the way the structure is drawn.

[2] Count up the number of valence electrons.

3 H 's	$\times 1$ electron per H	$=3$ electrons	
$2 \mathrm{C}^{\prime} \mathrm{s}$	x	4 electrons per C	$=8$ electrons
1 N	x 5 electrons per N	$=5$ electrons	
10	$\times 6$ electrons per O	$=+6$ electrons	

[3] Use the shortcut to figure out how many bonds are needed.

- Number of electrons needed if there were no bonds:

3 H's	x	2 electrons per H		
4 second-row elements	x	8 electrons per element	$=\frac{6 \text { electrons }}{+32 \text { electrons }}$	38 electrons needed if
:---				
there were no bonds				

- Number of electrons that must be shared:

$$
38 \text { electrons }
$$

- 22 electrons

16 electrons must be shared

- Since every bond takes two electrons, $16 / 2=\mathbf{8}$ bonds are needed.

[4] Draw all possible Lewis structures.

- Draw the bonds to the H's first (three bonds). Then add five more bonds. Arrange them between the C's, N, and O, making sure that no atom gets more than eight electrons. There are three possible arrangements of bonds; that is, there are three resonance structures.
- Add additional electron pairs to give each atom an octet and check that all 22 electrons are used.

Chapter 1-6

- Calculate the formal charge on each atom.

- You can evaluate the Lewis structures you have drawn. The middle structure is the best resonance structure, since it has no charged atoms.

Note: This method works for compounds that contain second-row elements in which every element gets an octet of electrons. It does NOT necessarily work for compounds with an atom that does not have an octet (such as BF_{3}), or compounds that have elements located in the third row and later in the periodic table.

Practice Test on Chapter Review

1. a. Which compound(s) contain a labeled atom with $\mathrm{a}+1$ formal charge? All lone pairs of electrons have been drawn in.
2.

2.

3.

4. Both (1) and (2) have labeled atoms with a +1 charge.
5. Compounds (1), (2), and (3) all contain labeled atoms with a +1 formal charge.
b. Which of the following compounds is a valid resonance structure for \mathbf{A} ?

A
1.

2.

3.

4. Both (1) and (2) are valid resonance structures for \mathbf{A}.
5. Cations (1), (2), and (3) are all valid resonance structures for \mathbf{A}.
c. Which species contains a labeled carbon atom that is $s p^{2}$ hybridized?
1.

2.

3.

4. Both (1) and (2) contain labeled $s p^{2}$ hybridized atoms.
5. Species (1), (2), and (3) all contain labeled $s p^{2}$ hybridized carbon atoms
d. Which of the following compounds has a net dipole?

1. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NHCH}_{2} \mathrm{CH}_{3}$
2. Compounds (1) and (2) both have net dipoles.
3. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
4. $\mathrm{FCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~F}$
5. Compounds (1), (2), and (3) all have net dipoles.
6. Rank the labeled bonds in order of increasing bond length. Label the shortest bond as $\mathbf{1}$, the longest bond as $\mathbf{4}$, and the bonds of intermediate length as $\mathbf{2}$ and $\mathbf{3}$.

7. Answer the following questions about compounds A-D.

A

B

C

D
a. What is the hybridization of the labeled atom in \mathbf{A} ?
b. What is the molecular shape around the labeled atom in \mathbf{B} ?
c. In what type of orbital does the lone pair in \mathbf{C} reside?
d. What orbitals are used to form bond [1] in \mathbf{D} ?
e. Which orbitals are used to form the carbon-oxygen double bond [2] in \mathbf{D} ?
8. Draw an acceptable Lewis structure for $\mathrm{CH}_{3} \mathrm{NO}_{3}$. Assume that the atoms are arranged as drawn.

	H		O	
H	C	O	N	O
	H			

5. Follow the curved arrows and draw the product with all the needed charges and lone pairs.

Answers to Practice Test

1. a.
a. 4
2. $\mathbf{A}-1$
3. a. $s p^{3}$
b. trigonal planar
c. 1
B - 4
c. $s p^{2}$
d. 5
D-3
d. $\mathrm{C} s p^{3}-\mathrm{C} s p^{2}$
e. $\mathrm{C} s p-\mathrm{O} s p^{2}$, $\mathrm{C} p-\mathrm{O} p$
4. One possibility:

5.

Chapter 1-8

Answers to Problems

1.1 The mass number is the number of protons and neutrons. The atomic number is the number of protons and is the same for all isotopes.

	Nitrogen-14	Nitrogen-13
a. number of protons $=$ atomic number for $\mathrm{N}=7$	7	7
b. number of neutrons $=$ mass number - atomic number	7	6
c. number of electrons $=$ number of protons	7	7
d. The group number is the same for all isotopes.	5 A	5 A

1.2 Ionic bonds form when an element on the far left side of the periodic table transfers an electron to an element on the far right side of the periodic table. Covalent bonds result when two atoms share electrons.
a. $\mathrm{F}_{4}^{\mathrm{F}}$ covalent
b. $\mathrm{Li}^{+} \mathrm{Br}^{-}$

All $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{C}$ bonds are covalent
d. $\mathrm{Na}^{+} \stackrel{-}{\mathrm{N}}-\mathrm{H}$
$\mathrm{H}^{\mathrm{H}^{+}} \quad \begin{aligned} & \text { Both } \mathrm{N}-\mathrm{H} \text { bonds } \\ & \text { are covalent. }\end{aligned}$
1.3 Atoms with one, two, three, or four valence electrons form one, two, three, or four bonds, respectively. Atoms with five or more valence electrons form [8-(number of valence electrons)] bonds.
a. $\mathrm{O} 8-6$ valence $\mathrm{e}^{-}=2$ bonds
c. $\mathrm{Br} 8-7$ valence $\mathrm{e}^{-}=1$ bond
b. AI 3 valence $\mathrm{e}^{-}=3$ bonds
d. Si 4 valence $\mathrm{e}^{-}=4$ bonds
1.4 [1] Arrange the atoms with the H's on the periphery.
[2] Count the valence electrons.
[3] Arrange the electrons around the atoms. Give the H's 2 electrons first, and then fill the octets of the other atoms.
[4] Assign formal charges (Section 1.3C).
a.
[1] H H
HCCH H H
H
[2] Count valence e^{-}.

$2 \mathrm{C} \times 4 \mathrm{e}^{-}=8$ | $6 \mathrm{H} \times 1 \mathrm{e}^{-}=6$ |
| :--- |
| total $\mathrm{e}^{-}=14$ |

[3]

All $14 \mathrm{e}^{-}$used.
[2] Count valence e^{-}.
[1] H
H C N H H H
$1 \mathrm{C} \times 4 \mathrm{e}^{-}=4$
$5 \mathrm{H} \times 1 \mathrm{e}^{-}=5$
$1 \mathrm{~N} \times 5 \mathrm{e}^{-}=5$
[3]

$12 \mathrm{e}^{-}$used.
N needs 2 more
electrons for an octet.
c.
[1] H
[2] Count valence e^{-}.

$1 \mathrm{C} \times 4 \mathrm{e}^{-}$	$=4$
$3 \mathrm{H} \times 1 \mathrm{e}^{-}$	$=3$
negative charge $=$	1
total e^{-}	$=8$

[3]

C needs 2 more
The - 1 charge on C is explained in Section 1.3C.]

[1] H
HCCl H
[2] Count valence e^{-}.
$1 \mathrm{C} \times 4 \mathrm{e}^{-}=4$ $3 \mathrm{H} \times 1 \mathrm{e}^{-}=3$ $\begin{array}{ll}1 \mathrm{Cl} \times 7 \mathrm{e}^{-} & =7 \\ \text { total } \mathrm{e}^{-} & =14\end{array}$

$$
\text { total } \mathrm{e}^{-} \quad=14
$$

[3]

I needs 6 more
electrons for an
1.5 Follow the directions from Answer 1.4.
a. HCN
H C N

Count valence e^{-}.
$1 \mathrm{C} \times 4 \mathrm{e}^{-}=4$
$1 \mathrm{H} \times 1 \mathrm{e}^{-}=1$
$1 \mathrm{~N} \times 5 \mathrm{e}^{-}=5$
total $\mathrm{e}^{-}=10$

b. $\mathrm{H}_{2} \mathrm{CO}$
H C O Count valence e^{-}. 1C $\times 4 \mathrm{e}^{-}=4$

$\mathrm{H}-\mathrm{C}-\mathrm{N}$
$\mathrm{H}-\mathrm{C} \equiv \mathrm{N}$:
$4 \mathrm{e}^{-}$used.
Complete N and C octets.
$1 \mathrm{H} \times 1 \mathrm{e}^{-}=1$
$1 \mathrm{~N} \times 5 \mathrm{e}^{-}=5$
c. $\mathrm{HOCH}_{2} \mathrm{CO}_{2} \mathrm{H}$
H O
H O C C O H $2 \mathrm{Cx} 4 \mathrm{e}^{-}=8$
$\mathrm{H} \quad 4 \mathrm{H} \times 1 \mathrm{e}^{-}=4$ $30 \times 6 \mathrm{e}^{-}=18$
total $\mathrm{e}^{-}=30$
Count valence e^{-}.

H
H

$$
\begin{aligned}
& 2 \mathrm{H} \times 1 \mathrm{e}^{-}=2 \\
& 10 \times 6 \mathrm{e}^{-}=6 \\
& \hline \text { total } \mathrm{e}^{-}=12
\end{aligned}
$$

$6 \mathrm{e}^{-}$used.
Complete O and C octets.

H	C
	H

Complete octets.

Sture and Bonding
1.6 Formal charge $(\mathrm{FC})=$ number of valence electrons - [number of unshared electrons + ($1 / 2$)(number of shared electrons)]

5
$b-[0+(1 / 2)(8)$
$5-[0+\underset{\downarrow}{1 / 2(8)]}=+1$
b. $\mathrm{CH}_{3}-\mathrm{N} \equiv \mathrm{C}$:
$5-[0+(1 / 2)(8)]=+1 \quad 4-[0+(1 / 2)(8)]=0 \quad 4-[2+(1 / 2)(6)]=-1 \quad 6-[4+(1 / 2)(4)]=0 \quad 6-[6+(1 / 2)(2)]=-1$

1.7

H
a. $\mathrm{CH}_{3} \mathrm{O}^{-}$
[1] H C O
[2] Count valence e^{-}. $1 \mathrm{C} \times 4 \mathrm{e}^{-}=4$ $3 \mathrm{H} \times 1 \mathrm{e}^{-}=3$

$10 \times 6 \mathrm{e}^{-}=6$
total $\mathrm{e}^{-}=13$

[3]

total $\mathrm{e}^{-}=13$
Add 1 for $(-)$ charge $=14$

Chapter 1-10
b. $\mathrm{HC}_{2}{ }^{-}$
[1] H C C

[2] Count valence e^{-}. | $2 \mathrm{C} \times 4 \mathrm{e}^{-}=8$ |
| :--- |
| $1 \mathrm{H} \times 1 \mathrm{e}^{-}=1$ |
| total $\mathrm{e}^{-}=9$ |

[3] $\mathrm{H}-\mathrm{C}-\mathrm{C} \longrightarrow \mathrm{H}-\mathrm{C} \equiv \mathrm{C}$:
[4] $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}$:
$4 \mathrm{e}^{-}$used
Assign charge.
Add 1 for (-) charge $=10$
c. $\left(\mathrm{CH}_{3} \mathrm{NH}_{3}\right)^{+}$
[1] H H
[2] Count valence e^{-}. $1 \mathrm{C} \times 4 \mathrm{e}^{-}=4$ $6 \mathrm{H} \times 1 \mathrm{e}^{-}=6$

$1 \mathrm{~N} \times 5 \mathrm{e}^{-}=5$
total $\mathrm{e}^{-}=15$

[3]

$14 \mathrm{e}^{-}$used.
4

 Subtract 1 for (+) charge $=14$
d. $\left(\mathrm{CH}_{3} \mathrm{NH}\right)^{-}$
$\begin{array}{rlll}\text { [1] } & H & & \\ H & C & N & H \\ & H & & \end{array}$

[2] Count valence e^{-}. $1 \mathrm{C} \times 4 \mathrm{e}^{-}=4$ $4 \mathrm{H} \times 1 \mathrm{e}^{-}=4$ | $1 \mathrm{~N} \times 5 \mathrm{e}^{-}=5$ |
| :--- |
| total $\mathrm{e}^{-}=13$ |

[3]

 total $\mathrm{e}^{-}=13$
Add 1 for (-) charge $=14$
Complete octet and assign charge.
1.8
a. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$ (two isomers)

Count valence e^{-}.

$2 \mathrm{C} \times 4 \mathrm{e}^{-}=8$
$4 \mathrm{H} \times 1 \mathrm{e}^{-}=4$

$2 \mathrm{Cl} \times 7 \mathrm{e}^{-}=14$
total $\mathrm{e}^{-}=26$

b. $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$ (three isomers)

Count valence e^{-}.
$3 C \times 4 \mathrm{e}^{-}=12$
$8 \mathrm{H} \times 1 \mathrm{e}^{-}=8$

$10 \times 6 \mathrm{e}^{-}=6$
total $\mathrm{e}^{-}=26$

c. $\mathrm{C}_{3} \mathrm{H}_{6}$ (two isomers)

Count valence e^{-}.
$3 C \times 4 \mathrm{e}^{-}=12$
$6 \mathrm{H} \times 1 \mathrm{e}^{-}=6$
total $\mathrm{e}^{-}=18$

1.9 Two different definitions:

- Isomers have the same molecular formula and a different arrangement of atoms.
- Resonance structures have the same molecular formula and the same arrangement of atoms.
a.
N at the end $\quad \mathrm{N}$ in the middle
b.

different arrangement of atoms = isomers
same arrangement of atoms = resonance structures
1.10 Isomers have the same molecular formula and a different arrangement of atoms.

Resonance structures have the same molecular formula and the same arrangement of atoms.
a.

same arrangement of atoms =
resonance structures

A

different molecular formulas $=$ neither

A
D

different arrangement of atoms = isomers
d. $\mathrm{CH}_{3}-\frac{+}{\mathrm{C}}=+$

B

D
different arrangement of atoms $=$ isomers
1.11 Curved arrow notation shows the movement of an electron pair. The tail begins at an electron pair (a bond or a lone pair) and the head points to where the electron pair moves.
a.

The net charge is the same in both resonance structures.
b.

The net charge is the same in both resonance structures.
1.12 Compare the resonance structures to see what electrons have "moved." Use one curved arrow to show the movement of each electron pair.
a.

One electron pair moves: one curved arrow.
b.

Two electron pairs move: two curved arrows.
1.13 To draw another resonance structure, move electrons only in multiple bonds and lone pairs and keep the number of unpaired electrons constant.
a.

c.

b.

Chapter 1-12
1.14 A "better" resonance structure is one that has more bonds and fewer charges. The better structure is the major contributor and all others are minor contributors. To draw the resonance hybrid, use dashed lines for bonds that are in only one resonance structure, and use partial charges when the charge is on different atoms in the resonance structures.
a.

b.

These two resonance structures are equivalent. They both have one charge and the same number of bonds. They are equal contributors to the hybrid.
hybrid:

1.15 Draw a second resonance structure for nitrous acid.

1.16 All representations have a carbon with two bonds in the plane of the page, one in front of the page (solid wedge) and one behind the page (dashed line). Four possibilities:

1.17 To predict the geometry around an atom, count the number of groups (atoms + lone pairs), making sure to draw in any needed lone pairs or hydrogens: 2 groups $=$ linear, 3 groups $=$ trigonal planar, 4 groups $=$ tetrahedral.

1.18 To predict the bond angle around an atom, count the number of groups (atoms + lone pairs), making sure to draw in any needed lone pairs or hydrogens: 2 groups $=180^{\circ}, 3$ groups $=120^{\circ}$, 4 groups $=109.5^{\circ}$.
a.

This C has 3 groups, so
both angles are 120°.
b.

c.

This C has 4 groups, so
both angles are 109.5°.
1.19 To predict the geometry around an atom, use the rules in Answer 1.17.

4 groups
tetrahedral (or bent molecular shape)

1.20 Reading from left to right, draw the molecule as a Lewis structure. Always check that carbon has four bonds and all heteroatoms have an octet by adding any needed lone pairs.

1.21 Simplify each condensed structure using parentheses.
a.

b.

c.

Chapter 1-14
1.22 Draw the Lewis structure of lactic acid.

1.23 In shorthand or skeletal drawings, all line junctions or ends of lines represent carbon atoms.

The carbons are all tetravalent.
a.

b.

1.24 In shorthand or skeletal drawings, all line junctions or ends of lines represent carbon atoms. Convert by writing in all carbons, and then adding hydrogen atoms to make the carbons tetravalent.
a.

b.

c.

d.

1.25 A charge on a carbon atom takes the place of one hydrogen atom. A negatively charged C has one lone pair, and a positively charged \mathbf{C} has none.
a.

positive charge no lone pairs no H's needed
b.

negative charge one lone pair one H needed
c.

positive charge no lone pairs one H needed
d.

negative charge one lone pair one H needed
1.26 Draw each indicated structure. Recall that in the skeletal drawings, a carbon atom is located at the intersection of any two lines and at the end of any line.
a.

c.

b.

d.

1.27 To determine the orbitals used in bonding, count the number of groups (atoms + lone pairs): 4 groups $=s p^{3}, 3$ groups $=s p^{2}, 2$ groups $=s p, \mathrm{H}$ atom $=1 s$ (no hybridization).
All covalent single bonds are σ, and all double bonds contain one σ and one π bond.

1.28 [1] Draw a valid Lewis structure for each molecule.
[2] Count the number of groups around each atom: 4 groups $=s p^{3}, 3$ groups $=s p^{2}, 2$ groups $=s p, \mathrm{H}$ atom $=1 s$ (no hybridization) .

Note: Be and B (Groups 2A and 3A) do not have enough valence e^{-}to form an octet, and do not form an octet in neutral molecules.
a.
H

Be has 2 bonds.
[2] Count groups around each atom:

b.

[2] Count groups around each atom:

[2] Count groups around each atom:

1.29 To determine the hybridization, count the number of groups around each atom: 4 groups $=s p^{3}$, 3 groups $=s p^{2}, 2$ groups $=s p, \mathrm{H}$ atom $=1 s$ (no hybridization).

b.

Chapter 1-16
1.30 All single bonds are σ. Multiple bonds contain one σ bond, and all others are π bonds.
All $\mathrm{C}-\mathrm{H}$ bonds are σ bonds
a.

b.

c.

1.31 Single bonds are weaker and longer than double bonds, which are weaker and longer than triple bonds. Increasing percent s-character increases bond strength and decreases bond length.
a.

c.

or

33% s-character
shorter bond
The triple bond is shorter than the double bond.
b.

The $\mathrm{C}=\mathrm{N}$ bond is shorter than the $\mathrm{C}-\mathrm{N}$ bond.
d. $\quad \begin{aligned} & \mathrm{CH}_{2}=\ddot{\mathrm{N}}-\mathrm{H} \\ & \mathrm{N} s p^{2}-\mathrm{H} 1 \mathrm{~s}\end{aligned}$
33\% s-character shorter bond

$\mathrm{N} s p^{3}-\mathrm{H} 1 s$
25\% s-character
1.32 Electronegativity increases from left to right across a row of the periodic table and decreases down a column. Look at the relative position of the atoms to determine their relative electronegativity.
most electropositive

c. $\xrightarrow[\substack{\text { increasing } \\ \text { electronegativity }}]{\substack{\text { most electropositive } \\ \text { most electronegative }}}$

1.33 Dipoles result from unequal sharing of electrons in covalent bonds. More electronegative atoms "pull" electron density towards them, making a dipole. Dipole arrows point towards the atom of higher electron density.
$\delta^{+} \delta^{-}$
a. $\mathrm{H}-\mathrm{F}$
\longmapsto
b.

c. $\xrightarrow{\delta^{-}} \stackrel{-}{\delta^{+}}$
d. $\xrightarrow{\delta^{+}+\stackrel{\delta^{-}}{\mathrm{Cl}}}$
1.34 Polar molecules result from a net dipole. To determine polarity, draw the molecule in three dimensions around any polar bonds, draw in the dipoles, and look to see whether the dipoles cancel or reinforce.
a.

C.

no resulting dipole $=$
nonpolar molecule
Four polar bonds cancel.

All C-H bonds have no dipole. one polar bond
net dipole $=$ polar molecule
b.

d.

Note: You must draw the molecule in three dimensions to observe the net dipole. In the Lewis structure, it appears the dipoles would cancel out, when in fact they add to make a polar molecule.
e.

1.35
a. The two circled C's are $s p^{3}$ hybridized.
b. All the $\mathrm{C}-\mathrm{H}$ bonds are nonpolar. All H^{\prime} s bonded to O and N bear a partial positive charge (δ^{+}).

1.36
a.

skeletal structure
b. Circled carbons are $s p^{3}$ hybridized. All others are $s p^{2}$ hybridized.
c. Each N is surrounded by three atoms and a lone pair, making it $s p^{3}$ hybridized and trigonal pyramidal in molecular shape.
d.

Chapter 1-18

1.37

a, b, c.

$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$
14 lone pairs, 2 lone pairs on each O
d. Each C that is part of a $\mathrm{C}=\mathrm{O}$ is $s p^{2}$ hybridized, so there are three $s p^{2} \mathrm{C}$'s.
e. Orbitals:
[1] $\mathrm{C}=\mathrm{O}, \mathrm{C} s p^{2}-\mathrm{O} s p^{2}$ and $\mathrm{C} p-\mathrm{O} p$
[2] $\mathrm{C}-\mathrm{C}, \mathrm{C} s p^{3}-\mathrm{C} s p^{2}$
[3] $\mathrm{O}-\mathrm{H}, \mathrm{O} s p^{3}-\mathrm{H} 1 s$
[4] $\mathrm{C}-\mathrm{O}, \mathrm{C} s p^{3}-\mathrm{O} s p^{3}$
1.38
$\mathrm{a}, \mathrm{b}, \mathrm{c}$.

$$
\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}
$$

6 lone pairs, 2 lone pairs on each O
d. The $s p^{2}$ hybridized C's (seven) are labeled with circles.
e. Orbitals:
[1] $\mathrm{C}-\mathrm{C}, \mathrm{C} s p^{3}-\mathrm{C} s p^{2}$
[2] C-C, Csp ${ }^{3}-\mathrm{C} s p^{3}$
[3] C-H, Csp ${ }^{3}-\mathrm{H} 1 s$
[4] C-H, Csp ${ }^{2}-\mathrm{H} 1 s$
1.39 Use the definitions in Answer 1.1.

	Iodine-123	Iodine-131
a. number of protons $=$ atomic number for I = 53	53	53
b. number of neutrons = mass number - atomic number	70	78
c. number of electrons = number of protons	53	53
d. The group number is the same for all isotopes.	7 A	7 A

1.40 Use bonding rules in Answer 1.2.
a.

b.

c.

d. H

e. N

1.41 Formal charge $(\mathrm{FC})=$ number of valence electrons - [number of unshared electrons + $(1 / 2)$ (number of shared electrons)]. C is in group 4A.

1.42 Formal charge $(\mathrm{FC})=$ number of valence electrons - [number of unshared electrons + $(1 / 2)$ (number of shared electrons)]. N is in group 5A and O is in group 6A.
a.

$5-[4+(1 / 2)(4)]=-1$

e. $\mathrm{CH}_{3}-\ddot{\mathrm{O}}$.
$6-[5+(1 / 2)(2)]=0$
$5-[0+(1 / 2)(8)]=+15-[2+(1 / 2)(6)]=0$

$$
5-[0+(1 / 2)(8)]=+1
$$

b.
b. $/$
$\stackrel{N}{N}=\mathrm{N}=\mathrm{N}:$
$5-[4+(1 / 2)(4)]=-1 \quad 5-[4+(1 / 2)(4)]=-1$
d.

1.43 Follow the steps in Answer 1.4 to draw Lewis structures.
a. $\mathrm{CH}_{2} \mathrm{~N}_{2}$
$\frac{\text { valence } \mathrm{e}^{-}}{1 \mathrm{C} \times 4 \mathrm{e}^{-}=4}$
$2 \mathrm{H} \times 1 \mathrm{e}^{-}=2$
$\frac{2 \mathrm{~N} \mathrm{x} 5 \mathrm{e}^{-}=10}{\text { total } \mathrm{e}^{-}=16}$

b. $\mathrm{CH}_{3} \mathrm{NO}_{2}$

$\frac{2 \mathrm{O} \times 6 \mathrm{e}^{-}=12}{\text { total } \mathrm{e}^{-}=24}$
c. $\mathrm{CH}_{3} \mathrm{CNO}$
$\frac{\text { valence } \mathrm{e}^{-}}{2 \mathrm{C} \times 4 \mathrm{e}^{-}=8}$

$2 \mathrm{C} \times 4 \mathrm{e}^{-}=$	8
$3 \mathrm{H} \times 1 \mathrm{e}^{-}=$	3
$1 \mathrm{~N} \times 5 \mathrm{e}^{-}=$	5
$10 \times 6 \mathrm{e}^{-}=$	6
total $\mathrm{e}^{-}=$	22

$$
\begin{array}{lll}
\text { f. } \begin{array}{lll}
-\mathrm{CH}_{2} \mathrm{CN} \\
\text { valence } \mathrm{e}^{-}
\end{array} & \\
\hline 2 \mathrm{C} \times 4 \mathrm{e}^{-} & = & 8 \\
2 \mathrm{H} \times 1 \mathrm{e}^{-} & = & 2 \\
1 \mathrm{~N} \times 5 \mathrm{e}^{-} & = & 5 \\
1 \text { for }(-) \text { charge }= & 1 \\
\hline \text { total } \mathrm{e}^{-} & = & 16
\end{array}
$$

$1 \mathrm{C} \times 4 \mathrm{e}^{-}=4$
$3 \mathrm{H} \times 1 \mathrm{e}^{-}=3$
$1 \mathrm{~N} \times 5 \mathrm{e}^{-}=5$

1.44 Follow the steps in Answer 1.4 to draw Lewis structures.
a. N_{2}
[1] N N
[2] Count valence e^{-}. $\frac{2 \mathrm{~N}^{2} 5 \mathrm{e}^{-}=10}{\text { total } \mathrm{e}^{-}=10}$
[3] $\mathrm{N}-\mathrm{N} \longrightarrow: \mathrm{N} \equiv \mathrm{N}$:
$2 \mathrm{e}^{-}$used.
Complete N octets.

Chapter 1-20
b. $\left(\mathrm{CH}_{3} \mathrm{OH}_{2}\right)^{+}$[1] H

$$
\begin{gathered}
\mathrm{H} \mathrm{C} \text { O } \mathrm{H} \\
\mathrm{H} \text { H }
\end{gathered}
$$

[2] Count valence e^{-}. [3] H
$\begin{array}{ll}1 \mathrm{C} \times 4 \mathrm{e}^{-}=4 & \mathrm{H}-\mathrm{C}-\mathrm{O}-\mathrm{H} \\ 5 \mathrm{H} \times 1 \mathrm{e}^{-}=5 & \mathrm{H} \text { H }\end{array}$ $10 \times 6 \mathrm{e}^{-}=6$
total $\mathrm{e}^{-}=15$
$12 \mathrm{e}^{-}$used.
Subtract 1 for
$(+)$ charge $=14$

c. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)^{-}$[1]
[2] Count valence e^{-}. [3] $2 \mathrm{C} \times 4 \mathrm{e}^{-}=8$
$5 \mathrm{H} \times 1 \mathrm{e}^{-}=5$
$\begin{aligned} & \text { total } \mathrm{e}^{-}=13 \\ & \text { Add } 1 \text { for } \\ & (-) \text { charge }=14\end{aligned}$
 and lone pair
d. HNNH
[1] H N N H
[2] Count valence e^{-}.

$2 \mathrm{H} \times 1 \mathrm{e}^{-}=2$ | $2 \mathrm{~N} \times 5 \mathrm{e}^{-}=10$ |
| :--- |
| total $\mathrm{e}^{-}=12$ |

[3] $\mathrm{H}-\mathrm{N}-\mathrm{N}-\mathrm{H} \longrightarrow \mathrm{H}-\ddot{\mathrm{N}}=\ddot{\mathrm{N}}-\mathrm{H}$ $6 \mathrm{e}^{-}$used. Complete N octets.
e. $\mathrm{H}_{6} \mathrm{BN}$
[1] H H
H B N H
H H
2] Count valence e^{-}

$$
\begin{aligned}
& 1 \mathrm{~B} \times 3 \mathrm{e}^{-}=3 \\
& 6 \mathrm{H} \times 1 \mathrm{e}^{-}=6 \\
& 1 \mathrm{~N} \times 5 \mathrm{e}^{-}=5 \\
& \hline \text { total } \mathrm{e}^{-}=14
\end{aligned}
$$

[3] H H

H
H
H
$14 \mathrm{e}^{-}$used.

[4] H H	$\substack{1+\\ \mathrm{H}-\mathrm{B}^{-}-\mathrm{N} \\ 1 \\ \mathrm{H} \\ \mathrm{H} \\ \mathrm{H} \\ \hline \\ \hline}$

Add charges.
1.45 Follow the steps in Answer 1.4 to draw Lewis structures.
a. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{O}$
[1] H H H H
H C C O C C H
H H H H

[2] Count valence e^{-}.
$10 \times 6 \mathrm{e}^{-}=6$
$10 \mathrm{H} \times 1 \mathrm{e}^{-}=10$
$4 \mathrm{C} \times 4 \mathrm{e}^{-}=16$
total $\mathrm{e}^{-}=32$

b. $\mathrm{CH}_{2} \mathrm{CHCN}$
[1] H H
C C C N
H
[2] Count valence e^{-}.
$1 \mathrm{~N} \times 5 \mathrm{e}^{-=} 5$
$3 \mathrm{H} \times 1 \mathrm{e}^{-}=3$
$3 \mathrm{C} \times 4 \mathrm{e}^{-}=12$
total $\mathrm{e}^{-}=20$
[3] H H

[4] H H

c. $\left(\mathrm{HOCH}_{2}\right)_{2} \mathrm{CO}$
[1] H O H H O C C C O H
[2] Count valence e^{-}.
$30 \times 6 \mathrm{e}^{-}=18$
$6 \mathrm{H} \times 1 \mathrm{e}^{-}=6$
$\frac{3 \mathrm{C} \times 4 \mathrm{e}^{-}=12}{\text { total } \mathrm{e}^{-}=36}$
[3] $\mathrm{H} O \mathrm{H}$ [4]
[4]

d. $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$
[1] $\mathrm{H} \mathrm{O} \quad \mathrm{O} \mathrm{H}$ HCCOOCCH
[2] Count valence e^{-}.
$30 \times 6 \mathrm{e}^{-}=18$
$6 \mathrm{H} \times 1 \mathrm{e}^{-}=6$

[4]

1.46

a.

b. Two of the possible resonance structures:

1.47 Isomers must have a different arrangement of atoms.

a. Two isomers of molecular formula $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Cl}$
c. Four isomers of molecular formula $\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{~N}$

b. Three isomers of molecular formula $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$

1.48

1.49 Use the definition of isomers and resonance structures in Answer 1.9.

A

a.

$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}$ isomers

b.

$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}$
1

$$
\begin{aligned}
& \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O} \\
& \text { different molecular formula } \\
& \text { neither isomers nor } \\
& \text { resonance structures }
\end{aligned}
$$

c.
$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}$
same arrangement
of atoms
resonance structures
 $\mathrm{C}_{6} \mathrm{O}$ different arrangement of atoms isomers

$$
\text { Nine isomers of } \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O} \text { : }
$$

Chapter 1-22
1.50 Use the definitions of isomers and resonance structures in Answer 1.9.

$\left(\mathrm{C}_{8} \mathrm{H}_{11}\right)^{+}$
a.

$\left(\mathrm{C}_{8} \mathrm{H}_{11}\right)^{+}$
b.

$\left(\mathrm{C}_{8} \mathrm{H}_{11}\right)^{+}$
same arrangement resonance structures
c.

$\left(\mathrm{C}_{8} \mathrm{H}_{11}\right)^{+}$
d.

$\left(\mathrm{C}_{8} \mathrm{H}_{9}\right)^{+}$
different arrangement different arrangement different molecular formula of atoms isomers
of atoms
neither isomers
1.51 Use the definitions of isomers and resonance structures in Answer 1.9.
a.

 Different arrangement of atoms.
c.
 and

Same arrangement of atoms. Both have molecular formula $\left(\mathrm{C}_{4} \mathrm{H}_{7}\right)^{-}$. Different arrangement of electrons = resonance structures Both have molecular formula $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}=$ isomers
b.

and
double bond
Both have molecular formula $\mathrm{C}_{4} \mathrm{H}_{8}=$ isomers
1.52 Compare the resonance structures to see what electrons have "moved." Use one curved arrow to show the movement of each electron pair.
a.

c.

b.

Four electron pairs move = four arrows
Two electron pairs move = two arrows
1.53 Curved arrow notation shows the movement of an electron pair. The tail begins at an electron pair (a bond or a lone pair) and the head points to where the electron pair moves.
a.

c.

b.

d.

1.54 Use the rules in Answer 1.13.
a.

Two electron pairs move = two arrows

c.

Two electron pairs move = two arrows

Double bond can be in 2 locations.
b.

d.

One electron pair moves = one arrow

1.55 For the compounds where the arrangement of atoms is not given, first draw a Lewis structure. Then use the rules in Answer 1.13.
a. O_{3}

$\frac{\text { Count valence } \mathrm{e}^{-}}{}$
$30 \times 6 \mathrm{e}^{-}=18$
total $\mathrm{e}^{-}=18$

b. NO_{3}^{-}(a central N atom)

Count valence e^{-}.
$1 \mathrm{~N} \times 5 \mathrm{e}^{-}=5$
$30 \times 6 \mathrm{e}^{-}=18$
$(-)$ charge $=1$
total $\mathrm{e}^{-}=24$

c. $\mathrm{N}_{3}{ }^{-}$
$\frac{\text { Count valence } \mathrm{e}^{-}}{3 \mathrm{~N} \times 5 \mathrm{e}^{-}=15}$.

$$
\begin{array}{ll}
(-) \text { charge } & =1 \\
\hline \text { total } e^{-} & =16
\end{array}
$$

d.

e.

Chapter 1-24
f.

1.56 To draw the resonance hybrid, use the rules in Answer 1.14.

1.57 A "better" resonance structure is one that has more bonds and fewer charges. The better structure is the major contributor and all others are minor contributors.
a.

b.

3 bonds for this N no charges
contributes the most $=3$

2 bonds for this N 2 charges contributes the least =1
1.58

This C would have 5 bonds.
a.

b.

c. $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{N}: \longleftrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2}-\stackrel{+}{\mathrm{C}}=\stackrel{-}{\mathrm{N}}:$ d.

This C would have 5 bonds.
1.59 Use the rules in Answer 1.18.
a. $\mathrm{CH}_{3} \mathrm{Cl}$

4 groups $=109.5^{\circ}$
c. 120°
3 groups $=120^{\circ}$
e.

4 groups $=\sim 109.5^{\circ}$

All C atoms have
3 groups $=120^{\circ}$.
1.60 To predict the geometry around an atom, use the rules in Answer 1.17.
a.

c.

(3 atoms) trigonal planar
e.

b.

(2 atoms, 2 lone pairs) tetrahedral (bent molecular shape)
d.

${ }_{4}^{4}$ groups
tetrahedral
f. $\quad\left(\mathrm{CH}_{3}\right)_{3} \stackrel{\mathrm{~N}}{\uparrow}$
(3 atoms, 1 lone pair)
tetrahedral (trigonal pyramidal molecular shape)
1.61 Each C has two bonds in the plane of the page, one in front of the page (solid wedge) and one behind the page (dashed line).

1.62 In shorthand or skeletal drawings, all line junctions or ends of lines represent carbon atoms. The C's are all tetravalent. All H's bonded to C's are drawn in the following structures. C's labeled with $\left({ }^{*}\right)$ have no H's bonded to them.

Chapter 1-26

1.63 In shorthand or skeletal drawings, all line junctions or ends of lines represent carbon atoms. Convert by writing in all C's, and then adding H's to make the C's tetravalent.
a.

(isolated from peppermint oil)
b.

c.

ethambutol
(drug used to treat tuberculosis)
d.

estradiol
(a female sex hormone)
estradiol
(a female sex hormone)
1.64 In skeletal formulas, leave out all C's and H's, except H's bonded to heteroatoms.
a. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$

b. $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{Cl}) \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$

c. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}$
d.

$\stackrel{H}{\mathrm{H}} \stackrel{\mathrm{C}}{\mathrm{C}} \mathrm{C}_{\mathrm{C}}^{\mathrm{C}}-\mathrm{H}_{\mathrm{H}}^{\mathrm{H}} \mathrm{CH}_{3}$
e.

limonene (oil of lemon)

f. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}(\mathrm{Br}) \mathrm{CH}_{3}$

1.65 For Lewis structures, all atoms including H's and all lone pairs must be drawn in.
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
c. $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{Br}$
e. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCHO}$
g. $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CO}_{2} \mathrm{H}$

b. $\mathrm{CH}_{3} \mathrm{CONHCH}_{3}$
d. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$
f. $\mathrm{CH}_{3} \mathrm{COCl}$
h. $\mathrm{HO}_{2} \mathrm{CCH}(\mathrm{OH}) \mathrm{CO}_{2} \mathrm{H}$

1.66 A charge on a C atom takes the place of one H atom. A negatively charged C has one lone
pair, and a positively charged C has none.
a.

b.

c.

d.

1.67
a.

b. $\mathrm{CH}_{3}-\mathrm{C} \equiv \stackrel{+}{\mathrm{N}} \mathrm{H}$
c.

d.

1.68 Examine each structure to determine the error.
a. $\mathrm{CH}_{3} \mathrm{CH}=\underset{\uparrow}{\mathrm{CH}} \mathrm{H}=\mathrm{CHCH}_{3}$
b. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

This C has 5 bonds.

Chapter 1-28
1.69 To determine the hybridization around the labeled atoms, use the procedure in Answer 1.29.
a. $\mathrm{CH}_{3} \stackrel{\ddot{\mathrm{C}}}{\mathrm{H}}{ }_{2}$ \uparrow 4 groups
(3 atoms, 1 lone pair)
$s p^{3}$, tetrahedral (trigonal pyramidal molecular shape)
c. $\left(\mathrm{CH}_{3}\right)_{3} \ddot{\mathrm{O}}^{+}$
(3 atoms, 1 lone pair) $s p^{3}$, tetrahedral (trigonal pyramidal molecular shape)
e.
 sp, linear
g. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}=\mathrm{CH}_{2}$

b.

4 groups (4 atoms)
$\boldsymbol{s} \boldsymbol{p}^{3}$, tetrahedral
d.
 $\boldsymbol{s} \boldsymbol{p}^{3}$, tetrahedral
f. $\mathrm{CH}_{2}=\ddot{\mathrm{N}} \mathrm{O}_{\mathrm{C}} \mathrm{CH}_{3}$

(2 atoms, 1 lone pair)
$s p^{2}$, trigonal planar
(Each C has 2 H's.)
1.70 To determine what orbitals are involved in bonding, use the procedure in Answer 1.27.
a.

d.

1.71

[For clarity, only the large bonding lobes of the hybrid orbitals are drawn.]
1.72
1.73 To determine relative bond length, use the rules in Answer 1.31.
a.

 middle

longest
b.

1.74

1.75 Percent s-character determines the strength of a bond. The higher percent s-character of an orbital used to form a bond, the stronger the bond.

1.76 Dipoles result from unequal sharing of electrons in covalent bonds. More electronegative atoms "pull" electron density towards them, making a dipole.
a. $\delta^{+} \mathrm{Br}_{\underset{\uparrow}{ }} \mathrm{Cl}^{-}$
b. $\quad \stackrel{\delta^{+}}{\mathrm{NH}_{2}}{ }_{-}^{\delta^{-}} \mathrm{OH}^{-}$
c. $\quad \delta^{\mathrm{C}_{3}} \mathrm{CH}_{3}-\mathrm{N}^{-} \mathrm{NH}_{2}$
d.

1.77 Use the directions from Answer 1.34.
a. CHBr_{3}
 \dagger net dipole
c. C

d.

e.

b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$

f.

Chapter 1-30
1.78

All $\mathrm{C}-\mathrm{H}$ bonds are nonpolar σ bonds.
All H's use a 1 s orbital in bonding.
1.79
a. $s p^{2}$
b. Each C is trigonal planar; the ring is flat, drawn as a hexagon.
c.

$s p^{2}$ hybrid orbitals on C σ bonds
d.

e. Benzene is stable because of its two resonance structures that contribute equally to the hybrid. [This is only part of the story. We'll learn more about benzene's unusual stability in Chapter 17.]
1.80

(trigonal pyramidal molecular shape)
b.

All $\mathrm{C}-\mathrm{O}, \mathrm{C}-\mathrm{N}, \mathrm{C}-\mathrm{S}, \mathrm{N}-\mathrm{H}$, and $\mathrm{O}-\mathrm{H}$ bonds are polar and labeled with arrows.
All partial positive charges lie on the C.
All partial negative charges lie on the O, N, or S . In OH and NH bonds, H bears a δ^{+}.
c. skeletal structure:

e. $33 \% s$-character $=s p^{2}$ hybridized

d.

1.81

1.82 a.

b. The $\mathrm{C}-\mathrm{C}$ bonds in the $\mathrm{CH}_{2} \mathrm{CH}_{3}$ groups are the longest because they are formed from $s p^{3}$ hybridized C's.
c. The shortest $\mathrm{C}-\mathrm{C}$ bond is labeled with a $\left(^{*}\right)$ because it is formed from orbitals with the highest percent s-character $\left(\mathrm{C} s p-\mathrm{C} s p^{2}\right)$.
d. The longest $\mathrm{C}-\mathrm{N}$ bond is formed from the $s p^{3}$ hybridized C atom bonded to a N atom [labeled in part (a)].
e. The shortest $\mathrm{C}-\mathrm{N}$ bond is the triple bond $(\mathrm{C} \equiv \mathrm{N})$; increasing the number of electrons between atoms decreases bond length.
f.

Chapter 1-32

1.83

$$
\begin{array}{cc}
& 3 \text { groups } \\
\stackrel{+}{\mathrm{C}} \mathrm{H}_{3} & s p^{2} \text { trigonal planar } \\
& \text { plot } \mathbf{A}
\end{array}
$$

The blue region is evidence of the electron-poor cation.
$\begin{array}{cc} & 4 \text { groups } \\ \vdots & \mathrm{CH}_{3} \\ s p^{3} \text { tetrahedral }\end{array}$ (The molecular shape is trigonal pyramidal.) plot B

The red region is evidence of the electron-rich anion.
1.84 If the N atom is $s p^{2}$ hybridized, the lone pair occupies a p orbital, which can overlap with the π bond of the adjacent $\mathrm{C}=\mathrm{O}$. This allows electron density to delocalize, which is a stabilizing feature.
σ bonds in $-\mathrm{CONH}_{2}$
π bonds in $-\mathrm{CONH}_{2}$

-

1.85
a.

25\% s-character
 The lower percent s-character makes this bond longer.
b.

33% s-character

two resonance structures
Bonds [3] and [4] are both equivalent in length, because the anion is resonance-stabilized, and the $\mathrm{C}-\mathrm{O}$ bond of the hybrid is a composite of one single bond and one double bond. Both resonance structures contribute equally to the hybrid. Since each $\mathrm{C}-\mathrm{O}$ bond in the hybrid has partial double bond character, it is shorter than the $\mathrm{C}-\mathrm{O}$ single bond labeled [2].
1.86 Ten additional resonance structures are drawn. (There are more possibilities.)

1.87 Polar bonds result from unequal sharing of electrons in covalent bonds. Normally we think of more electronegative atoms "pulling" more of the electron density towards them, making a dipole. In looking at a $\mathrm{C} s p^{2}-\mathrm{C} s p^{3}$ bond, the atom with a higher percent s-character will "pull" more of the electron density towards it, creating a small dipole.

1.88

Chapter 1-34
1.89 Carbocation \mathbf{A} is more stable than carbocation \mathbf{B} because resonance distributes the positive charge over two carbons. Delocalizing electron density is stabilizing. \mathbf{B} has no possibility of resonance delocalization.

A

B

No resonance structures

1.90

a.

Chapter 2 Acids and Bases

Chapter Review

A comparison of Brønsted-Lowry and Lewis acids and bases

Type	Definition	Structural feature	Examples
Brønsted-Lowry acid (2.1)	proton donor	a proton	$\begin{aligned} & \mathrm{HCl}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O}, \\ & \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{TsOH} \end{aligned}$
Brønsted-Lowry base (2.1)	proton acceptor	a lone pair or a π bond	$\begin{gathered} -\mathrm{OH},{ }^{-} \mathrm{OCH}_{3}, \mathrm{H}^{-},-\mathrm{NH}_{2}, \\ \mathrm{CH}_{2}=\mathrm{CH}_{2} \end{gathered}$
Lewis acid (2.8)	electron pair acceptor	a proton, or an unfilled valence shell, or a partial $(+)$ charge	$\mathrm{BF}_{3}, \mathrm{AlCl}_{3}, \mathrm{HCl}$, $\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{H}_{2} \mathrm{O}$
Lewis base (2.8)	electron pair donor	a lone pair or a π bond	${ }^{-} \mathrm{OH},{ }^{-} \mathrm{OCH}_{3}, \mathrm{H}^{-},-{ }^{-} \mathrm{NH}_{2},$

Acid-base reactions

[1] A Brønsted-Lowry acid donates a proton to a Brønsted-Lowry base (2.2).

[2] A Lewis base donates an electron pair to a Lewis acid (2.8).

- Electron-rich species react with electron-poor ones.
- Nucleophiles react with electrophiles.

Important facts

- Definition: $\mathbf{p} \boldsymbol{K}_{\mathbf{a}}=-\log \boldsymbol{K}_{\mathbf{a}}$. The lower the $\mathbf{p} \boldsymbol{K}_{\mathbf{a}}$, the stronger the acid (2.3).
NH_{3}
$\mathrm{pK} \mathrm{K}_{\mathrm{a}}=38$
versus
$\mathrm{H}_{2} \mathrm{O}$
$\mathrm{p} K_{\mathrm{a}}=15.7$
lower $\mathrm{p} K_{\mathrm{a}}=$ stronger acid

Chapter 2-2

- The stronger the acid, the weaker the conjugate base (2.3).

- In proton transfer reactions, equilibrium favors the weaker acid and the weaker base (2.4).

- An acid can be deprotonated by the conjugate base of any acid having a higher $\mathbf{p} \boldsymbol{K}_{\mathbf{a}}(2.4)$.

Acid	$\mathrm{p} K_{\mathrm{a}}$	Conjugate base	
$\mathrm{CH}_{3} \mathrm{COO}-\mathrm{H}$	4.8	$\mathrm{CH}_{3} \mathrm{COO}^{-}$	
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}-\mathrm{H}$	16	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{-}$	These bases
$\mathrm{HC} \equiv \mathrm{CH}$	25	$\mathrm{HC} \equiv \mathrm{C}^{-}$	can deprotonate
$\mathrm{H}-\mathrm{H}$	35	H^{-}	$\mathrm{CH}_{3} \mathrm{COO}-\mathrm{H}$.
	$\begin{aligned} & \text { higher } \mathrm{p} K_{\mathrm{a}} \\ & \text { than } \\ & \mathrm{CH}_{3} \mathrm{COO}-\mathrm{H} \end{aligned}$		

Factors that determine acidity (2.5)

[1] Element effects (2.5A) The acidity of H-A increases both left to right across a row and down a column of the periodic table.

$\stackrel{\text { - }}{\text { - }}$		$-\mathrm{O}-\mathrm{H}$	H-F
Increasing electronegativity			
Increasing acidity			
H-F	$\mathrm{H}-\mathrm{Cl}$	$\mathrm{H}-\mathrm{Br}$	H-I
Increasing size			
Increasing acidity			

[2] Inductive effects (2.5B) The acidity of $\mathrm{H}-\mathrm{A}$ increases with the presence of electronwithdrawing groups in A .

$\underset{\text { weaker acid }}{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}} \longrightarrow$| No additional electronegative |
| :---: |
| atoms stabilize the conjugate base. |

[3] Resonance effects (2.5C) The acidity of $\mathrm{H}-\mathrm{A}$ increases when the conjugate base $\mathrm{A}:^{-}$is resonance stabilized.

[4] Hybridization effects The acidity of $\mathrm{H}-\mathrm{A}$ increases as the percent s-character of (2.5D) the $\mathrm{A}:^{-}$increases.

$\mathrm{CH}_{3} \mathrm{CH}_{3}$ ethane $\mathrm{p} K_{\mathrm{a}}=50$	$\mathrm{CH}_{2}=\mathrm{CH}_{2}$ ethylene	$\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$ acetylene $\mathrm{p} K_{\mathrm{a}}=44$
	$\mathrm{p} K_{\mathrm{a}}=25$	

Chapter 2-4

Practice Test on Chapter Review

1. a Given the $\mathrm{p} K_{\mathrm{a}}$ data, which of the following bases is strong enough to deprotonate $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ $\left(\mathrm{p} K_{\mathrm{a}}=10\right)$ so that the equilibrium lies to the right?

Compound	$\mathrm{p} K_{\mathrm{a}}$
$\mathrm{H}_{3} \mathrm{O}^{+}$	-1.7
$\mathrm{NH}_{4}{ }^{+}$	9.4
$\mathrm{H}_{2} \mathrm{O}$	15.7
NH_{3}	38

1. NaOH
2. NaNH_{2}
3. NH_{3}
4. Compounds (1) and (2) are strong enough to deprotonate $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$.
5. Compounds (1), (2), and (3) are all strong enough to deprotonate $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$.
b. Which of the following statements is true about $\mathrm{p} K_{\mathrm{a}}$, acidity, and basicity?
6. A higher $\mathrm{p} K_{\mathrm{a}}$ means the acid is less acidic.
7. In an acid-base reaction, the equilibrium lies on the side of the acid with the higher $\mathrm{p} K_{\mathrm{a}}$.
8. A lower $\mathrm{p} K_{\mathrm{a}}$ value for the acid means the conjugate base is more basic.
9. Statements (1) and (2) are both true.
10. Statements (1), (2), and (3) are all true.
c. Which of the following species can be Lewis acids?
11. BCl_{3}
12. $\mathrm{CH}_{3} \mathrm{OH}$
13. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}$
14. Both (1) and (2) can be Lewis acids.
15. Species (1), (2), and (3) can all be Lewis acids.
16. Answer the following questions about compounds A-D.

A

B

C

D
a. Which compound is the strongest acid?
b. Which compound forms the strongest conjugate base?
c. The conjugate base of \mathbf{C} is strong enough to remove a proton on which compound(s) such that the equilibrium favors the products?
17. (a) Which compound is the strongest Brønsted-Lowry acid? (b) Which compound is the weakest Brønsted-Lowry acid?

A

B

C

D
18. Draw all the products formed in the following reactions.

19. Draw the product(s) formed in the following Lewis acid-base reaction.

Answers to Practice Test

1. a.
2. a. D
b. 4
b. A
c. 5
c. \mathbf{B}, \mathbf{D}
3. a. \mathbf{C} 4. a.

4.

b.

Answers to Problems

2.1 Bronsted-Lowry acids are proton donors and must contain a hydrogen atom. Bronsted-Lowry bases are proton acceptors and must have an available electron pair (either a lone pair or a π bond).
a. $\quad \mathrm{HB̈r}:$
$\ddot{\mathrm{N}} \mathrm{H}_{3}$
CCl_{4} acid
acid
not an acid-no H
b.
$\mathrm{CH}_{3} \mathrm{CH}_{3}$
no lone pairs
or π bonds
not a base
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CO}{ }^{-}-$
lone pairs
on O
base base- π bonds
c.

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}
$$ not a base-no lone pairs

or π bonds
acid-contains H atoms

base-lone pairs on O 's, π bond acid-contains H atoms
2.2 A Brønsted-Lowry base accepts a proton to form the conjugate acid. A Brønsted-Lowry acid loses a proton to form the conjugate base.
a. $\mathrm{NH}_{3} \longrightarrow \mathrm{NH}_{4}^{+}$
$\mathrm{Cl}^{-} \longrightarrow \mathrm{HCl}$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{O} \longrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\stackrel{+}{\mathrm{O}} \mathrm{H}$
b. $\mathrm{HBr} \longrightarrow \mathrm{Br}^{-}$

$$
\mathrm{HSO}_{4}^{-} \longrightarrow \mathrm{SO}_{4}^{2-}
$$

$$
\mathrm{CH}_{3} \mathrm{OH} \longrightarrow \mathrm{CH}_{3} \mathrm{O}^{-}
$$

Chapter 2-6
2.3 The Brønsted-Lowry base accepts a proton to form the conjugate acid. The Brønsted-Lowry acid loses a proton to form the conjugate base. Use curved arrows to show the movement of electrons (NOT protons). Re-draw the starting materials if necessary to clarify the electron movement.
a.

b.

2.4 To draw the products:
[1] Find the acid and base.
[2] Transfer a proton from the acid to the base.
[3] Check that the charges on each side of the arrows are balanced.
a.

d.

2.5 Draw the products in each reaction as in Answer 2.4.
a. $\mathrm{CH}_{3} \mathrm{OH} \xrightarrow{\mathrm{HCl}} \mathrm{CH}_{3} \stackrel{+}{+} \mathrm{H}_{2}+\mathrm{Cl}^{-}$
c. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N} \xrightarrow{\mathrm{HCl}}\left(\mathrm{CH}_{3}\right)_{3} \stackrel{+}{\mathrm{N}} \mathrm{H}+\mathrm{Cl}^{-}$
b. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{O} \xrightarrow{\mathrm{HCl}}\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \stackrel{+}{\mathrm{O}} \mathrm{H}+\mathrm{Cl}^{-}$
d.

2.6 The smaller the $\mathrm{p} K_{\mathrm{a}}$, the stronger the acid. The larger the K_{a}, the stronger the acid.
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$
$\mathrm{p} K_{\mathrm{a}}=50$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
$\mathrm{p} K_{\mathrm{a}}=16$
$\underbrace{\uparrow}_{\substack{\text { smaller } \mathrm{p} K_{a} \\ \text { stronger acid }}}$
b.

$K_{\mathrm{a}}=10^{-10}$
or
larger K_{a}
stronger acid

$K_{a}=10^{-41}$
2.7 To convert from K_{a} to $\mathrm{p} K_{\mathrm{a}}$, take (-) the \log of the $K_{\mathrm{a}} ; \mathbf{p} \boldsymbol{K}_{\mathrm{a}}=-\log \boldsymbol{K}_{\mathrm{a}}$. To convert $\mathrm{p} K_{\mathrm{a}}$ to K_{a}, take the antilog of (-) the $\mathrm{p} K_{\mathrm{a}}$.
a. $K_{\mathrm{a}}=10^{-10}$

b.

2.8 Since strong acids form weak conjugate bases, the basicity of conjugate bases increases with increasing $\mathrm{p} K_{\mathrm{a}}$ of their acids. Find the $\mathrm{p} K_{\mathrm{a}}$ of each acid from Table 2.1 and then rank the acids in order of increasing $\mathrm{p} K_{\mathrm{a}}$. This will also be the order of increasing basicity of their conjugate bases.

2.9 Use the definitions in Answer 2.8 to compare the acids. The smaller the $\mathrm{p} K_{\mathrm{a}}$, the larger the K_{a} and the stronger the acid. When a stronger acid dissolves in water, the equilibrium lies further to the right.

$$
\begin{gathered}
\mathrm{HCO}_{2} \mathrm{H} \\
\text { formic acid } \\
\mathrm{p} K_{\mathrm{a}}=3.8
\end{gathered}
$$

a. smaller $\mathrm{p} K_{\mathrm{a}}=$ larger K_{a}
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCO}_{2} \mathrm{H}$ pivalic acid $\mathrm{p} K_{\mathrm{a}}=5.0$
c. weaker acid = stronger conjugate base
b. smaller $\mathrm{p} K_{\mathrm{a}}=$ stronger acid
d. stronger acid = equilibrium further to the right
2.10 To estimate the $\mathrm{p} K_{\mathrm{a}}$ of the indicated bond, find a similar bond in the $\mathrm{p} K_{\mathrm{a}}$ table (H bonded to the same atom with the same hybridization).
a.

b.

c. $\mathrm{BrCH}_{2} \mathrm{COO}^{-} \mathrm{H}$
For $\mathrm{NH}_{3}, \mathrm{p} K_{\mathrm{a}}$ is 38 .
estimated $\mathrm{p} K_{\mathrm{a}}=38$

$$
\begin{gathered}
\text { For } \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}, \\
\mathrm{p} K_{\mathrm{a}} \text { i } 16 . \\
\text { estimated } \mathrm{p} K_{\mathrm{a}}=\mathbf{1 6}
\end{gathered}
$$

For $\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{p} K_{\mathrm{a}}$ is 4.8 .
estimated $\mathrm{p} K_{\mathrm{a}}=5$
2.11 Label the acid and the base and then transfer a proton from the acid to the base. To determine if the reaction will proceed as written, compare the $\mathrm{p} K_{\mathrm{a}}$ of the acid on the left with the conjugate acid on the right. The equilibrium always favors the formation of the weaker acid and the weaker base.
a.

Chapter 2-8

2.12 An acid can be deprotonated by the conjugate base of any acid with a higher $\mathrm{p} K_{\mathrm{a}}$.
$\mathrm{CH}_{3} \mathrm{CN}$
$\mathbf{p K} \mathrm{K}_{\mathrm{a}}=\mathbf{2 5}$

Any base having a conjugate acid with a $\mathrm{p} K_{\mathrm{a}}$ higher than 25 can deprotonate this acid.

Base	Conjugate acid
NaH	H_{2}
$\mathrm{Na}_{2} \mathrm{CO}_{3}$	HCO_{3}
NaOH_{2}	$\mathrm{H}_{2} \mathrm{O}^{-}$
NaNH_{2}	NH_{3}
NaHCO_{3}	$\mathrm{H}_{2} \mathrm{CO}_{3}$

2.13 The acidity of $\mathrm{H}-\mathrm{Z}$ increases left to right across a row and down a column of the periodic table.
a. $\mathrm{NH}_{3},{\underset{\mathrm{H}}{2}}^{\mathrm{O}_{2} \mathrm{O}}$ is farther to the right in the periodic table. stronger acid
Br is farther across and down
the periodic table. stronger acid
2.14 Compare the most acidic protons in each compound to determine the stronger acid.
a.

or
$\mathrm{N}-\mathrm{H}$ bond

N is farther to the right in the periodic table.
b.

or
 the periodic table
O is farther to the right in the periodic table.
stronger acid
2.15 Look at the element bonded to the acidic H and decide its acidity based on the periodic trends. Farther to the right and down the periodic table is more acidic.
most acidic
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
Molecule contains C-H and $\mathrm{O}-\mathrm{H}$ bonds.
O is farther right; therefore, $\mathrm{O}-\mathrm{H}$ hydrogen is the most acidic.
b. $\stackrel{\downarrow}{\mathrm{H}} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
Molecule contains $\mathrm{C}-\mathrm{H}$, $\mathrm{N}-\mathrm{H}$, and $\mathrm{O}-\mathrm{H}$ bonds.
O is farthest right; therefore, $\mathrm{O}-\mathrm{H}$ hydrogen is the most acidic.
c. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ Molecule contains $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ bonds.
N is farther right; therefore, $\mathrm{N}-\mathrm{H}$ hydrogen is the most acidic.
2.16 The acidity of HA increases left to right across the periodic table. Pseudoephedrine contains $\mathrm{C}-\mathrm{H}, \mathrm{N}-\mathrm{H}$, and $\mathrm{O}-\mathrm{H}$ bonds. The $\mathrm{O}-\mathrm{H}$ bond is most acidic.

pseudoephedrine skeletal structure
2.17 More electronegative atoms stabilize the conjugate base, making the acid stronger. Compare the electron-withdrawing groups on the acids below to decide which is a stronger acid (more electronegative groups $=$ more acidic).

a.	$\mathrm{ClCH}_{2} \mathrm{COOH}$		$\mathrm{FCH}_{2} \mathrm{COOH}$ more acidic	C.	$\mathrm{CH}_{3} \mathrm{COOH}$	or	$\begin{gathered} \mathrm{O}_{2} \mathrm{NCH}_{2} \mathrm{COOH} \\ \text { more acidic } \end{gathered}$
F is more electronegative than Cl , making the $\mathrm{O}-\mathrm{H}$ bond in the acid on the right more acidic.					NO_{2} is electron withdrawing, making the $\mathrm{O}-\mathrm{H}$ bond in the acid on the right more acidic.		
b.	$\mathrm{Cl}_{2} \mathrm{CHCH}_{2} \mathrm{OH}$	or	$\mathrm{Cl}_{2} \mathrm{CHCH}_{2} \mathrm{CH}$				
	Cl is closer e acidic $\mathrm{O}-\mathrm{H}$ bo more acidic		Cl is farther fro $\mathrm{O}-\mathrm{H}$ bond				

2.18 More electronegative groups stabilize the conjugate base, making the acid stronger.

\downarrow an α-hydroxy acid $\mathrm{CO}_{2} \mathrm{H}$	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ acetic acid
The extra OH group contains an electronegative	
O, which stabilizes the conjugate base.	
stronger acid	

2.19 HBr is a stronger acid than HCl because Br is farther down a column of the periodic table, and the larger Br^{-}anion is more stable than the smaller Cl^{-}anion. In these acids the H is bonded directly to the halogen. In HOCl and HOBr , the H is bonded to O , and the halogens Cl and Br exert an inductive effect. In this case, the more electronegative Cl stabilizes ${ }^{-} \mathrm{OCl}$ more than the less electronegative Br stabilizes ${ }^{-} \mathrm{OBr}$. Thus, HOCl forms the more stable conjugate base, making it the stronger acid.
2.20 The acidity of an acid increases when the conjugate base is resonance stabilized. Compare the conjugate bases of acetone and propane to explain why acetone is more acidic.

Chapter 2-10

2.21 The acidity of an acid increases when the conjugate base is resonance stabilized. Acetonitrile has a resonance-stabilized conjugate base, which accounts for its acidity.

2.22 Increasing percent \boldsymbol{s}-character makes an acid more acidic. Compare the percent s-character of the carbon atoms in each of the $\mathrm{C}-\mathrm{H}$ bonds in question. A stronger acid has a weaker conjugate base.
a.

b.

or

stronger conjugate base
2.23 To compare the acids, first look for element effects. Then identify electron-withdrawing groups, resonance, or hybridization differences.

acidity

c. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
C is farthest left in
the periodic table.
CH bond is
least acidic.

b.

intermediate
 and the conjugate base most acidic
2.24 Look at the element bonded to the acidic H and decide its acidity based on the periodic trends. Farther to the right and down the periodic table is more acidic.
a.

b.

ketoprofen
tetrahydrocannabinol
The molecule contains $\mathrm{C}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ bonds.
O is farther right; therefore,
$\mathrm{O}-\mathrm{H}$ hydrogen is the most acidic.
The molecule contains $\mathrm{C}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ bonds.
O is farther right; therefore, $\mathrm{O}-\mathrm{H}$ hydrogen is the most acidic.
2.25 Draw the products of proton transfer from the acid to the base.
a.

b.

$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \stackrel{+}{+} \mathrm{H}_{2}+\mathrm{HSO}_{4}^{-}$
base
acid
conjugate acid conjugate base
c.

acid
base conjugate base conjugate acid
d.

 $+\underset{\text { conjugate base }}{-\mathrm{OCOCH}_{3}}$
2.26 To cross a cell membrane, amphetamine must be in its neutral (not ionic) form.

2.27 Lewis bases are electron pair donors: they contain a lone pair or a π bond.
a. $\ddot{\mathrm{N}} \mathrm{H}_{3}$
yes - has lone pair
b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$
c. H ः
d. $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$
no - no lone pair or π bond
yes - has
lone pair
yes - has
2π bonds

Chapter 2-12
2.28 Lewis acids are electron pair acceptors. Most Lewis acids contain a proton or an unfilled valence shell of electrons.

a. BBr_{3}	b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	c. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}$	d. Br^{-}		
yes	yes	yes	no		
unfilled valence shell					
on B				\quad contains a proton \quad	unfilled valence shell
:---:	no proton	on C			
:---:					

2.29 Label the Lewis acid and Lewis base and then draw the curved arrows.
a.

b.

2.30 A Lewis acid is also called an electrophile. When a Lewis base reacts with an electrophile other than a proton, it is called a nucleophile. Label the electrophile and nucleophile in the starting materials and then draw the products.
a.

b.

2.31 Draw the product of each reaction by using an electron pair of the Lewis base to form a new bond to the Lewis acid.
a.

Lewis
nucleophile lone pair on N
unfilled valence shell
on B
b.

Lewis base nucleophile on $\mathrm{N} \quad$ on C

2.32 Curved arrows begin at the Lewis base and point towards the Lewis acid.

Lewis base Lewis acid
contains a π bond contains a proton
2.33 a, b. Since acidity increases from left to right across a row of the periodic table and propranolol has $\mathrm{C}-\mathrm{H}, \mathrm{N}-\mathrm{H}$, and $\mathrm{O}-\mathrm{H}$ bonds, the $\mathrm{O}-\mathrm{H}$ bond is most acidic. NaH is a base and removes the most acidic OH proton.

c, d. Of the atoms with lone pairs (N and O), N is to the left in the periodic table, making it the most basic site. HCl is an acid, which protonates the most basic site.

2.34 a, b. Using periodic trends, the $\mathrm{N}-\mathrm{H}$ bond of amphetamine is most acidic. NaH is a base that removes a proton on N .

skeletal structure

Chapter 2-14
c. HCl protonates the lone pair on N .

2.35 To draw the conjugate acid of a Brønsted-Lowry base, add a proton to the base.
a. $\mathrm{H}_{2} \ddot{\mathrm{O}}: \xrightarrow{\mathrm{H}^{+}} \mathrm{H}_{3} \ddot{\mathrm{O}}^{+}$
b. $: \ddot{\mathrm{N}} \mathrm{H}_{2} \xrightarrow{\mathrm{H}^{+}} \ddot{\mathrm{N}} \mathrm{H}_{3}$
c. $\mathrm{HCO}_{3}^{-} \xrightarrow{\mathrm{H}^{+}} \mathrm{H}_{2} \mathrm{CO}_{3}$
d. $\mathrm{CH}_{3} \mathrm{CH}_{2} \ddot{\mathrm{NH}} \mathrm{HCH}_{3} \xrightarrow{\mathrm{H}^{+}} \mathrm{CH}_{3} \mathrm{CH}_{2} \stackrel{+}{\mathrm{NH}_{2} \mathrm{CH}_{3}}$
e. CH_{3} Ö. $\mathrm{CH}_{3} \xrightarrow{\mathrm{H}^{+}} \mathrm{CH}_{3}-\stackrel{+}{\mathrm{O}}-\mathrm{OH}_{3}$
f. $\mathrm{CH}_{3} \mathrm{COO}^{-} \xrightarrow{\mathrm{H}^{+}} \mathrm{CH}_{3} \mathrm{COOH}$
2.36 To draw the conjugate base of a Brønsted-Lowry acid, remove a proton from the acid.
a. $\mathrm{HCN} \xrightarrow{-\mathrm{H}^{+}}-\mathrm{CN}$
b. $\mathrm{HCO}_{3}^{-} \xrightarrow{-\mathrm{H}^{+}} \mathrm{CO}_{3}{ }^{2-}$
c. $\left(\mathrm{CH}_{3}\right)_{2} \stackrel{+}{\mathrm{N}} \mathrm{H}_{2} \xrightarrow{-\mathrm{H}^{+}}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
d. $\mathrm{HC} \equiv \mathrm{CH} \xrightarrow{-\mathrm{H}^{+}} \mathrm{HC} \equiv \mathrm{C}^{-}$
e. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH} \xrightarrow{-\mathrm{H}^{+}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}$
f. $\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H} \xrightarrow{-\mathrm{H}^{+}} \mathrm{CH}_{3} \mathrm{SO}_{3}^{-}$
2.37 Use the definitions from Answer 2.2.

2.38 To draw the products of an acid-base reaction, transfer a proton from the acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right.$ in this case) to the base.
a.

b.

c.

d.

2.39 To draw the products of an acid-base reaction, transfer a proton from the acid to the base (${ }^{-} \mathrm{OH}$ in this case).
a.

b.

c.

d.

2.40 Label the Brønsted-Lowry acid and Brønsted-Lowry base in the starting materials and transfer a proton from the acid to the base for the products.
a.

b.

c.

d.

2.41 Label the acid and base in the starting materials and then draw the products of proton transfer from acid to base.
a.

b.

Chapter 2-16
c.

d.

2.42 Draw the products of proton transfer from acid to base.

b.

2.43 Draw the products of proton transfer from acid to base.

2.44 To convert $\mathrm{p} K_{\mathrm{a}}$ to K_{a}, take the antilog of (-) the $\mathrm{p} K_{\mathrm{a}}$.
a. $\mathrm{H}_{2} \mathrm{~S}$ $\mathrm{p} K_{\mathrm{a}}=7.0$
$K_{a}=10^{-7}$
b. $\mathrm{ClCH}_{2} \mathrm{COOH}$
c. HCN
$\mathrm{p} K_{\mathrm{a}}=2.8$
$K_{\mathrm{a}}=1.6 \times 10^{-3}$
$\mathrm{p} K_{\mathrm{a}}=9.1$
$K_{a}=7.9 \times 10^{-10}$
2.45 To convert from K_{a} to $\mathrm{p} K_{\mathrm{a}}$, take (-) the \log of the $K_{\mathrm{a}} ; \mathbf{p} K_{\mathrm{a}}=-\log K_{\mathrm{a}}$.
a.

b.

c. $\mathrm{CF}_{3} \mathrm{COOH}$

$$
K_{a}=4.7 \times 10^{-10}
$$

$$
\mathrm{p} K_{\mathrm{a}}=9.3
$$

$K_{\mathrm{a}}=2.3 \times 10^{-5}$
$\mathrm{p} K_{\mathrm{a}}=4.6$
$K_{\mathrm{a}}=5.9 \times 10^{-1}$
$\mathrm{p} K_{\mathrm{a}}=0.23$
2.46 An acid can be deprotonated by the conjugate base of any acid with a higher $\mathrm{p} K_{\mathrm{a}}$.

2.47 ${ }^{-} \mathrm{OH}$ can deprotonate any acid with a $\mathrm{p} K_{\mathrm{a}}<15.7$.
a. HCOOH
$\mathrm{p} K_{\mathrm{a}}=3.8$
stronger acid deprotonated
b. $\mathrm{H}_{2} \mathrm{~S}$
$\mathrm{p} K_{\mathrm{a}}=7.0$
stronger acid deprotonated
c.

$\mathrm{p} K_{\mathrm{a}}=41$
weaker acid
weaker acid
d. $\mathrm{CH}_{3} \mathrm{NH}_{2}$
$\mathrm{p} K_{\mathrm{a}}=40$
These acids are too weak to be deprotonated by -OH .
2.48 Draw the products and then compare the $\mathrm{p} K_{\mathrm{a}}$ of the acid on the left and the conjugate acid on the right. The equilibrium lies towards the side having the acid with a higher $\mathrm{p} K_{\mathrm{a}}$ (weaker acid).
a.

products favored
$\mathrm{p} K_{\mathrm{a}}=0.2$
b.

c. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C} 0 \stackrel{\mathrm{O}}{\mathrm{H}}+\mathrm{H}-\mathrm{OSO}_{3} \mathrm{H} \rightleftharpoons\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C} \mathrm{CO}_{2}^{+} \mathrm{H}_{2}+\mathrm{HSO}_{4}^{-} \quad$ products favored $\mathrm{p} K_{\mathrm{a}}=-9 \quad \mathrm{p} K_{\mathrm{a}}=\sim-3$
d.

$$
\mathrm{p} K_{\mathrm{a}}=10
$$

e.

$$
\mathrm{p} K_{\mathrm{a}}=50
$$

products favored
f. $\mathrm{CH}_{3} \stackrel{\stackrel{\mathrm{NH}}{2}}{+-\mathrm{OSO}_{3} \mathrm{H}} \rightleftarrows \mathrm{CH}_{3} \stackrel{+}{\mathrm{N}} \mathrm{H}_{3}+\mathrm{HSO}_{4}$ products favored

$$
\mathrm{p} K_{\mathrm{a}}=-9 \quad \mathrm{p} K_{\mathrm{a}}=10.7
$$

Chapter 2-18
2.49 Compare element effects first and then resonance, hybridization, and electron-withdrawing groups to determine the relative strengths of the acids.
a. Acidity increases across a row: $\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{HF}$
b. Acidity increases down a column:
$\mathrm{HF}<\mathrm{HCl}<\mathrm{HBr}$
c. increasing acidity: ${ }^{-} \mathrm{OH}<\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{3} \mathrm{O}^{+}$
d. increasing acidity: $\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}$

Compare NH and OH bonds first: acidity increases across a row.

OH is more acidic.
Then compare OH and SH bonds: acidity increases down a column. SH is more acidic.
e. Acidity increases across a row: $\mathrm{CH}_{3} \mathrm{CH}_{3}<\mathrm{CH}_{3} \mathrm{NH}_{2}<\mathrm{CH}_{3} \mathrm{OH}$
f. increasing acidity: $\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{HCl}$

Compare HCl and SH bonds first: acidity increases across a row.
$\mathrm{H}-\mathrm{Cl}$ is more acidic.
Compare OH and SH bonds: acidity increases down a column. SH is more acidic.
g. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
$\left.\begin{array}{c}\text { only } \mathrm{C}-\mathrm{H} \text { bonds } \\ \text { weakest acid }\end{array} \begin{array}{c}\text { O-H bond and } \\ \begin{array}{c}\text { electron-withdrawing } \\ \text { strongest acid }\end{array} \\ \text { increasing acidity: } \\ \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}<\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\end{array}\right]$ bond

strongest acid weakest acid
increasing acidity: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}<\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}<\mathrm{HC} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{3}$
2.50 The strongest acid has the weakest conjugate base.
a. Draw the conjugate acid. Increasing acidity of conjugate acids: $\mathrm{CH}_{3} \mathrm{CH}_{3}<\mathrm{CH}_{3} \mathrm{NH}_{2}<\mathrm{CH}_{3} \mathrm{OH}$
d. Draw the conjugate acid.
Increasing acidity of conjugate acids:
increasing basicity: $\mathrm{CH}_{3} \mathrm{O}^{-}<\mathrm{CH}_{3} \overline{\mathrm{~N}} \mathrm{H}<\mathrm{CH}_{3} \overline{\mathrm{C}} \mathrm{H}_{2}$
b. Draw the conjugate acid.
Increasing acidity of conjugate acids:
$\mathrm{CH}_{4}<\mathrm{H}_{2} \mathrm{O}<\mathrm{HBr}$
increasing basicity: $\mathrm{Br}^{-}<\mathrm{HO}^{-}<{ }^{-} \mathrm{CH}_{3}$

increasing basicity:

c. Draw the conjugate acid.
Increasing acidity of conjugate acids:
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}<\mathrm{CH}_{3} \mathrm{COOH}<\mathrm{ClCH}_{2} \mathrm{COOH}$
increasing basicity: $\mathrm{ClCH}_{2} \mathrm{COO}^{-}<\mathrm{CH}_{3} \mathrm{COO}^{-}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{-}$
2.51 More electronegative atoms stabilize the conjugate base by an electron-withdrawing inductive effect, making the acid stronger. Thus, an O atom increases the acidity of an acid.

$\mathrm{p} K_{\mathrm{a}}=11.1$

The O atom makes this cation the stronger acid.

$$
\mathrm{p} K_{\mathrm{a}}=8.33
$$

2.52 In both molecules the OH proton is the most acidic H . In addition, compare the percent s-character of the carbon atoms in each molecule. Nearby C's with a higher percent s-character can help to stabilize the conjugate base.

$$
\begin{gathered}
\mathrm{HC} \equiv \mathrm{CCO}_{2} \mathrm{H} \\
\mathrm{pK} K_{\mathrm{a}}=1.8
\end{gathered}
$$

The $s p$ hybridized C's of the triple bond have a higher percent s-character than an $s p^{3}$ hybridized C , so they pull electron density towards them, stabilizing the conjugate base.

> stronger acid
2.53

$$
\begin{gathered}
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H} \\
\mathrm{p} K_{\mathrm{a}}=4.9
\end{gathered}
$$

2.54 To draw the conjugate acid, look for the most basic site and protonate it. To draw the conjugate base, look for the most acidic site and remove a proton.

2.55 Estimate the $\mathrm{p} K_{\mathrm{a}}$ of \mathbf{B} as 16 . A difference of 10^{5} in acidity is a difference of $5 \mathrm{p} K_{\mathrm{a}}$ units.
a.

most acidic H $\mathrm{p} K_{\mathrm{a}} \sim 5$
b.

most acidic
$\mathrm{p} K_{\mathrm{a}} \sim 25$
c.

most acidic $\mathrm{p} K_{\mathrm{a}} \sim 16$

Chapter 2-20
2.56 Remove the most acidic proton to form the conjugate base. Protonate the most basic electron pair to form the conjugate acid.

2.57 Compare the isomers.

2.58 Compare the Lewis structures of the conjugate bases when each H is removed. The more stable base makes the proton more acidic.

2.59 Draw the conjugate base to determine the most acidic hydrogen.

2.60 Look at the element bonded to the acidic H and decide its acidity based on the periodic trends. Farther to the right across a row and down a column of the periodic table is more acidic.
a.

The molecule contains $\mathrm{C}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ bonds. O is farther right in the periodic table; therefore, the $\mathrm{O}-\mathrm{H}$ hydrogen is the most acidic.
b.

most acidic

The molecule contains $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ bonds. N is farther right in the periodic table; therefore, the $\mathrm{N}-\mathrm{H}$ hydrogen is the most acidic.

The molecule contains $\mathrm{C}-\mathrm{H}, \mathrm{N}-\mathrm{H}$, and $\mathrm{O}-\mathrm{H}$ bonds. O is farthest right in the periodic table; therefore, the $\mathrm{O}-\mathrm{H}$ hydrogen is the most acidic.
2.61 Use element effects, inductive effects, and resonance to determine which protons are the most acidic. The H's of the CH_{3} group are least acidic since they are bonded to an $s p^{3}$ hybridized C and the conjugate base formed by their removal is not resonance stabilized.

Both O-H protons [(b) and (c)] are more acidic than the C-H proton (a) by the element effect. The most acidic proton has added resonance stabilization when it is removed, making its conjugate base the most stable.

Chapter 2-22
2.62 Lewis bases are electron pair donors: they contain a lone pair or a π bond. BronstedLowry bases are proton acceptors: to accept a proton they need a lone pair or a π bond. This means Lewis bases are also Brønsted-Lowry bases.
a.

c.

b. $\quad \mathrm{CH}_{3}-\ddot{\mathrm{C}} \mathrm{I}: \longleftarrow$ lone pairs on Cl both
neither = no lone pairs or π bond
d.

π bonds
both
2.63 A Lewis acid is an electron pair acceptor and usually contains a proton or an unfilled valence shell of electrons. A Bronsted-Lowry acid is a proton donor and must contain a hydrogen atom. All Brønsted-Lowry acids are Lewis acids, though the reverse may not be true.
a. $\mathrm{H}_{3} \mathrm{O}^{+}$
both
contains a H
b. $\quad \mathrm{Cl}_{3} \mathrm{C}^{+}$ Lewis acid unfilled valence shell on C
c. BCl_{3}
Lewis acid unfilled valence shell on B
d. BF_{4}^{-}

neither

no H or unfilled
valence shell
2.64 Label the Lewis acid and Lewis base and then draw the products.

2.65 A Lewis acid is also called an electrophile. When a Lewis base reacts with an electrophile other than a proton, it is called a nucleophile. Label the electrophile and nucleophile in the starting materials and then draw the products.

b. nucleophile electrophile
nucleophile electrophile
d.

 nucleophile electrophile
2.66 Draw the product of each reaction.
a.

b.

e.

c.

2.67

2.68 Draw the products of each reaction. In part (a), ${ }^{-} \mathrm{OH}$ pulls off a proton and thus acts as a Brønsted-Lowry base. In part (b), ${ }^{-} \mathrm{OH}$ attacks a carbon and thus acts as a Lewis base.
a.

b. $\mathrm{OH}_{+\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}}$ \qquad $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CO} \mathrm{H}$
2.69 Answer each question about esmolol.

Chapter 2-24
c.

d, e, f.

All $s p^{2}$ C's are indicated with an arrow. The N is the only trigonal pyramidal atom. The δ^{+}C's are indicated with a (*).
2.70

$\mathrm{p} K_{\mathrm{a}}=11.1$

weaker base $\quad \mathrm{p} K_{\mathrm{a}}=1.2$
much lower $\mathrm{p} K_{\mathrm{a}}$ much stronger acid

The four CH_{3} groups near the electron pair make it difficult to donate that electron pair to a proton. This makes the conjugate base of \mathbf{Q} much weaker, and \mathbf{Q} a stronger acid.
2.71
[1]
 no additional stabilization
[2]

Path [2] is favored because a resonance-stabilized conjugate acid is formed. The N that is part of the $\mathrm{C}=\mathrm{N}$ is therefore more basic.
2.72 Draw the product of protonation of either O or N and compare the conjugate acids. When acetamide reacts with an acid, the O atom is protonated because it results in a resonancestabilized conjugate acid.

2.73

2.74 The COOH group of glycine gives up a proton to the basic NH_{2} group to form the zwitterion.
 glycine zwitterion form

most basic site
c.

most acidic site
2.75 Use curved arrows to show how the reaction occurs.
[1]

[2]

Protonate the negative charge on this carbon to form the product.

Chapter 2-26
2.76 Compare the OH bonds in vitamin C and decide which one is the most acidic.

This proton is less acidic since its conjugate base is less resonance stabilized.
2.77

\mathbf{N} has two resonance structures with the same number of bonds and charges, so both contribute approximately equally to the hybrid. This makes \mathbf{N} more resonance stabilized than its conjugate base, and less willing to give up a proton than \mathbf{M}, which has no similar resonance stabilization. Thus \mathbf{M} is a stronger acid than \mathbf{N}. (Resonance structures that break the $\mathrm{C}=\mathrm{O}$ bond are not drawn in this solution, since they are possible for each compound.)

Chapter 3 Introduction to Organic Molecules and Functional Groups

Chapter Review

Types of intermolecular forces (3.3)

	Type of force	Cause	Examples
	van der Waals (VDW)	Due to the interaction of temporary dipoles - Larger surface area, stronger forces - Larger, more polarizable atoms, stronger forces	All organic compounds
	dipole-dipole (DD)	Due to the interaction of permanent dipoles	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{O}, \mathrm{H}_{2} \mathrm{O}$
	hydrogen bonding (HB or H -bonding)	Due to the electrostatic interaction of a H atom in an $\mathrm{O}-\mathrm{H}, \mathrm{N}-\mathrm{H}$, or $\mathrm{H}-\mathrm{F}$ bond with another N , O , or F atom.	$\mathrm{H}_{2} \mathrm{O}$
	ion-ion	Due to the interaction of two ions	$\mathrm{NaCl}, \mathrm{LiF}$

Physical properties

Property	Observation
Boiling point (3.4A)	- For compounds of comparable molecular weight, the stronger the forces the higher the bp. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO} \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
	VDW VDW, DD VDW, DD, HB MW =72 MW $=72$ MW $=74$ $\mathrm{bp}=36^{\circ} \mathrm{C}$ $\mathrm{bp}=76^{\circ} \mathrm{C}$ $\mathrm{bp}=118^{\circ} \mathrm{C}$
	Increasing strength of intermolecular forces Increasing boiling point

- For compounds with similar functional groups, the larger the surface area, the higher the bp.

$$
\xrightarrow[\substack{\text { Increasing surface area } \\ \text { Increasing boiling point }}]{\substack{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \\ \text { bp }=0^{\circ} \mathrm{C}}} \stackrel{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}}{\text { bp }=36^{\circ} \mathrm{C}}
$$

- For compounds with similar functional groups, the more polarizable the atoms, the higher the bp .

$\mathrm{CH}_{3} \mathrm{~F}$	$\mathrm{CH}_{3} \mathrm{I}$ $\mathrm{bp}=-78{ }^{\circ} \mathrm{C}$

Increasing polarizability
Increasing boiling point

Chapter 3-2

Reactivity (3.8)

- Nucleophiles react with electrophiles.
- Electronegative heteroatoms create electrophilic carbon atoms, which tend to react with nucleophiles.
- Lone pairs and π bonds are nucleophilic sites that tend to react with electrophiles.

Practice Test on Chapter Review

1.a. Which of the following compounds exhibits dipole-dipole interactions?
1.

4. Compounds (1) and (2) both exhibit dipoleĞdipole interactions.
5. Compounds (1), (2), and (3) all exhibit dipoleĞdipole interactions.
2.

3. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{OH}$
b. Which of the following compounds can hydrogen bond to both another molecule like itself and to water?
1.

4. Compounds (1) and (2) can each hydrogen bond to another molecule like itself and water.
2.

5. Each of the three compounds, (1), (2), and (3), can hydrogen bond to another molecule like itself and to water.
c. Which of the following compounds has the highest boiling point?

1. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$
2. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$
3. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NH}_{2}$
4. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{2}$
5. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}$
d. Which statement(s) is (are) true about the following compounds?

A

B

1. The boiling point of \mathbf{A} is higher than the boiling point of \mathbf{B}.
2. The melting point of \mathbf{B} is higher than the melting point of \mathbf{C}.
3. The boiling point of \mathbf{A} is higher than the boiling point of \mathbf{D}.
4. Statements (1) and (2) are both true.
5. Statements (1), (2), and (3) are all true.
6. Consider the anti-hypertensive agent atenolol drawn below.

Chapter 3-4
a. What is the hybridization of the N atom labeled with \mathbf{A} ?
b. What is the shape around the C atom labeled with \mathbf{F} ?
c. What orbitals are used to form the bond labeled with \mathbf{E} ?
d. Which bond $(\mathbf{B}, \mathbf{C}$, or $\mathbf{D})$ is the longest bond?
e. Would you predict atenolol to be soluble in water?
f. Which of the labeled H atoms $\left(\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}\right.$, or $\left.\mathrm{H}_{\mathrm{c}}\right)$ is most acidic?

Answers to Practice Test

1. a. $5 \quad$ 2. a. $s p^{3}$
b. 2
b. trigonal planar
c. 3
c. $\mathrm{C}_{s p^{2}}-\mathrm{C}_{s p^{3}}$
d. 5
d. D
e. yes
f. H_{b}

Answers to Problems

3.1

3.2 Identify the functional groups based on Tables 3.1, 3.2, and 3.3.

3.3 One possible structure for each functional group:
a. aldehyde $=$

c. carboxylic acid $=$

b. ketone $=$

d. ester $=$

3.4 One possible structure for each description:
a. $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$

b. $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}$

3.5 Summary of forces:

- All compounds exhibit van der Waals forces (VDW).
- Polar molecules have dipole-dipole forces (DD).
- Hydrogen bonding (H-bonding) can occur only when a \mathbf{H} is bonded to an \mathbf{O}, \mathbf{N}, or \mathbf{F}.
a.

- only nonpolar C-C and $\mathrm{C}-\mathrm{H}$ bonds
- VDW only
c. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}$
- VDW forces
- polar C-N bonds - DD
-no H on N so no H -bonding
b.

- VDW forces
d. $\quad \mathrm{CH}_{2}=\mathrm{CHCl}$
- VDW forces
- polar C-Cl bond - DD
e. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
- VDW forces
- polar C-O bonds and a net dipole - DD
- H bonded to O H -bonding
f. $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$
- only nonpolar C-H and
- 2 polar C-O bonds and a net dipole - DD
- no H on O so no H -bonding
3.6 One principle governs boiling point:
- Stronger intermolecular forces = higher bp.

Increasing intermolecular forces: van der Waals $<$ dipole-dipole $<$ hydrogen bonding
Two factors affect the strength of van der Waals forces, and thus affect bp:

- Increasing surface area = increasing bp.

Longer molecules have a larger surface area. Any branching decreases the surface area of a molecule.

- Increasing polarizability $=$ increasing bp.
a. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$ or $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{O}$

polar, stronger intermolecular forces
higher boiling point
c. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$ or $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}$
longer molecule, more surface area
b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ or $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$
VDW, DD, and H-bonding
d.

or $\mathrm{CH}_{2}=\mathrm{CHI}$ stronger intermolecular forces
higher boiling point

Chapter 3-6
3.7 Increasing intermolecular forces: van der Waals $<$ dipole-dipole $<$ hydrogen bonding

$\mathrm{N}-\mathrm{H}$ bonds allow for hydrogen bonding. stronger intermolecular forces higher boiling point

no hydrogen bonding
weaker intermolecular forces
3.8
a.
 or
 stronger intermolecular forces (H -bonding)
higher mp
b.

more spherical packs better higher mp
or

3.9 Compare the intermolecular forces to explain why sodium acetate has a higher melting point than acetic acid.

acetic acid
a. VDW, DD, and H -bonding
b. not ionic, lower melting point

sodium acetate
a. VDW, DD, ionic bonds
b. Ionic bonds are the strongest: higher melting point.
3.10 A compound is water soluble if it is ionic or if it has an O or N atom and $\leq 5 \mathrm{C}$'s.
a.
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$

can H -bond with water $\leq 5 \mathrm{C}$'s
water soluble
b.

c. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}$
an N atom that can
H-bond to $\mathrm{H}_{2} \mathrm{O}$, but
$>5 \mathrm{C}$ s
not water soluble
3.11 Hydrophobic portions will primarily be hydrocarbon chains. Hydrophilic portions will be polar.

Circled regions are hydrophilic because they are polar. All other regions are hydrophobic since they have only C and H .
a.

norethindrone
b.

arachidonic acid

3.12 Like dissolves like.

- To be soluble in water, a molecule must be ionic, or have a polar functional group capable of H-bonding for every 5 C's.
- Organic compounds are generally soluble in organic solvents regardless of size or functional group.
a.

vitamin B_{3} (niacin)
soluble in water due to two polar functional groups and only 6 C's in the molecule
b.

3.13 a.

b. The amide, carboxylic acid, and both alcohols can all hydrogen bond with water.
c. Since pantothenic acid has only nine carbons with four functional groups that can hydrogen bond, pantothenic acid is a water-soluble vitamin.
3.14 A soap contains both a long hydrocarbon chain and a carboxylic acid salt.

3.15 Detergents have a polar head consisting of oppositely charged ions, and a nonpolar tail consisting of $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$ bonds, just like soaps do. Detergents clean by having the hydrophobic ends of molecules surround grease, while the hydrophilic portion of the molecule interacts with the polar solvent (usually water).

Chapter 3-8

3.16

nonactin

valinomycin
3.17 Because the interior of a cell membrane is nonpolar, aspirin crosses a cell membrane as a neutral carboxylic acid, by the general rule "Like dissolves like."
3.18 Electronegative heteroatoms like N, O, or X make a carbon atom an electrophile.

A lone pair on a heteroatom makes it basic and nucleophilic.
$\operatorname{Pi}(\pi)$ bonds create nucleophilic sites and are more easily broken than σ bonds.
a.

C bonded to Br electrophilic

c.

d.

3.19 Electrophiles and nucleophiles react with each other.
a.

electrophile

C.

b.

d.

3.20

a.

b, c.

H 's that are boxed in can hydrogen bond to O of $\mathrm{H}_{2} \mathrm{O}$.
Atoms labeled with (*) can hydrogen bond to H of $\mathrm{H}_{2} \mathrm{O}$.

3.21

a, c.

Electrophilic carbons are labeled with (*).
3.22
a, c.

The most electrophilic C is labeled with *.
b.

Three OH's allow for H-bonding. Stronger intermolecular forces mean a higher bp and mp .
b.

This isomer has an OH , more opportunities for H -bonding (through both O and H atoms), and so probably more $\mathrm{H}_{2} \mathrm{O}$ soluble.

Chapter 3-10
3.23 Identify the functional groups based on Tables 3.1, 3.2, and 3.3.
a.

e.

b.

d.

f.

3.24

3.25 A cyclic ester is called a lactone. A cyclic amide is called a lactam.
a.

amine
b.

c.

ester lactone
d.

amide
3.26 Draw the constitutional isomers and identify the functional groups.

3.27 Use the rules from Answer 3.5.
a.

VDW
dipole-dipole
b.

VDW
dipole-dipole H -bonding ($\mathrm{O}-\mathrm{H}$ bond) no H -bonding (no $\mathrm{O}-\mathrm{H}$ bond) no H -bonding (no $\mathrm{N}-\mathrm{H}$ bond) (nonpolar $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{H}$ bonds)
c.

VDW
dipole-dipole
d.

VDW no dipole-dipole no H-bonding (no O, N, F)
3.28 Increasing intermolecular forces: van der Waals $<$ dipole-dipole $<\mathrm{H}$-bonding
a. increasing intermolecular forces:

b. increasing intermolecular forces:

c. increasing intermolecular forces:

d. increasing intermolecular forces:

H -bonding

3.29

3.30 $\mathbf{A}=$ VDW forces; $\mathbf{B}=\mathrm{H}$-bonding; $\mathbf{C}=$ ion-ion interactions; $\mathbf{D}=\mathrm{H}$-bonding; $\mathbf{E}=\mathrm{H}$-bonding; $\mathbf{F}=$ VDW forces.
3.31
a.

aldehyde

ketone

ether

alcohol
b. The alcohol is the highest boiling since it is the only isomer that can hydrogen bond with another molecule like itself.
3.32 Use the principles from Answer 3.6.
a.

$$
\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{I}
$$

$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5}-\mathrm{I}$

$$
\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{I}
$$

Increasing size, increasing surface area, increasing boiling point

Chapter 3-12
b.

c.

d.

Increasing boiling point
e.

Increasing boiling point

Increasing boiling point
3.33 In $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NHCH}_{3}$, there is a $\mathrm{N}-\mathrm{H}$ bond so the molecules exhibit intermolecular hydrogen bonding, whereas in $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$ the N is bonded only to C , so there is no hydrogen bonding. The hydrogen bonding in $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NHCH}_{3}$ makes it have much stronger intermolecular forces than $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$. As intermolecular forces increase, the boiling point of a molecule of the same molecular weight increases.
3.34 Stronger forces, higher mp.

menthone VDW
dipole-dipole lower melting point

menthol VDW
dipole-dipole H -bonding
stronger forces
higher melting point
3.35 Stronger forces, higher mp . More symmetrical compounds, higher mp.
a.

Increasing intermolecular forces
Increasing melting point
b. $\mathrm{CH}_{3} \mathrm{~F}<\mathrm{CH}_{3} \mathrm{Cl}<\mathrm{CH}_{3} \mathrm{I}$
Increasing polarizability
Increasing melting point
c.

VDW

Increasing intermolecular forces
Increasing melting point

VDW DD

VDW
DD
H-bonding

3.36

In both compounds the CH_{3} group dangling from the chain makes packing in the solid difficult, so the mp is low.

This molecule can pack somewhat better since it has no CH_{3} group dangling from the chain, so the mp is somewhat higher. It also has the most surface area and this increases VDW forces compared to the first two compounds.

$-25^{\circ} \mathrm{C}$ most spherical highest mp
This compound packs the best since it is the most spherical in shape, increasing its mp .
3.37 Boiling point is determined solely by the strength of the intermolecular forces. Since benzene has a smaller size, it has less surface area and weaker VDW interactions and therefore a lower boiling point than toluene. The increased melting point for benzene can be explained by symmetry: benzene is much more symmetrical than toluene. More symmetrical molecules can pack more tightly together, increasing their melting point. Symmetry has no effect on boiling point.

very symmetrical closer packing in solid form higher mp

less symmetrical
lower mp

Chapter 3-14
3.38 Increasing polarity $=$ increasing water solubility.

Neither compound is very $\mathrm{H}_{2} \mathrm{O}$ soluble.
a.

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}<$	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}$	$<\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{3}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	
VDW	VDW	VDW	VDW
more spherical	DD	DD	
(This nonpolar, hydrophobic			

making it more water soluble than its straight-chain isomer, drawn to the left.)
b.
 polar no H-bonding

polar H -bonding to $\mathrm{H}_{2} \mathrm{O}$, not itself

polar and H-bonding More opportunities for H -bonding with its O atom and its H on O .
3.39 Look for two things:

- To H-bond to another molecule like itself, the molecule must contain a \mathbf{H} bonded to \mathbf{O}, \mathbf{N}, or \mathbf{F}.
- To H-bond with water, a molecule needs only to contain an \mathbf{O}, \mathbf{N}, or \mathbf{F}.
Each of these molecules can H -bond to another molecule like itself. Both compounds have $\mathrm{N}-\mathrm{H}$ bonds.
b. $\mathrm{CH}_{3} \mathrm{NH}_{2}$, e. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}_{2}$
These molecules can H -bond with water. All of these molecules have an O or N atom.
b. $\mathrm{CH}_{3} \mathrm{NH}_{2}$, c. $\mathrm{CH}_{3} \mathrm{OCH}_{3}$, d. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}$,
e. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}_{2}$, g. $\mathrm{CH}_{3} \mathrm{SOCH}_{3}$,
h. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{3}$
3.40 Draw the molecules in question and look at the intermolecular forces involved.
(iethyl ether

1-butanol
VDW forces
dipole-dipole forces

VDipole-dipole forces
h-bonding

- Both have ≤ 5 C's and an electronegative O atom, so they can H-bond to water, making them soluble in water.
- Only 1-butanol can H-bond to another molecule life itself, and this increases its boiling point.
3.41 Use the solubility rule from Answer 3.12.
a.

many polar bonds with N and O atoms many opportunities for H -bonding
c.

sucrose
many polar bonds with O
11 O's and 12 C 's
many opportunities for H -bonding with $\mathrm{H}_{2} \mathrm{O}$ water soluble
b.

d.

3.42 Water solubility is determined by polarity. Polar molecules are soluble in water, while nonpolar molecules are soluble in organic solvents.

3.43 Compare the functional groups in the two components of sunscreen. Dioxybenzone will most likely be washed off in water because it contains two hydroxy groups and is more water soluble.

Chapter 3-16
3.44 Because of the O atoms, PEG is capable of hydrogen bonding with water, which makes PEG water soluble and suitable for a product like shampoo. PVC cannot hydrogen bond to water, so PVC is water insoluble, even though it has many polar bonds. Since PVC is water insoluble, it can be used to transport and hold water.

no H-bonding

poly(vinyl chloride)
PVC
water insoluble
3.45 Molecules that dissolve in water are readily excreted from the body in urine, whereas less polar molecules that dissolve in organic solvents are soluble in fatty tissue and are retained for longer periods. Compare the solubility properties of THC and ethanol to determine why drug screenings can detect THC and not ethanol weeks after introduction to the body.

tetrahydrocannabinol
THC
THC has relatively few polar bonds compared to the number of nonpolar bonds, making it soluble in organic solvents and therefore soluble in fatty tissue.

Due to their solubilities, THC is retained much longer in the fatty tissue of the body, being slowly excreted over many weeks, while ethanol is excreted rapidly in urine after ingestion.
3.46 Compare the intermolecular forces of crack and cocaine hydrochloride. Stronger intermolecular forces increase both the boiling point and the water solubility.

The molecules are identical except for the ionic bond in cocaine hydrochloride. Ionic forces are extremely strong forces, and therefore the cocaine hydrochloride salt has a much higher boiling point and is more water soluble. Since the salt is highly water soluble, it can be injected directly into the bloodstream, where it dissolves. Crack is smoked because it can dissolve in the organic tissues of the nasal passages and lungs.
3.47 A laundry detergent must have both a highly polar end of the molecule and a nonpolar end of the molecule. The polar end will interact with water, while the nonpolar end surrounds the grease or other organic material.
a.

3.48
a.

b.

five functional groups that have many opportunities for H -bonding
 water soluble
c. Since the hydrochloride salt is ionic and therefore more water soluble, it is more readily transported in the bloodstream.

Chapter 3-18
3.49 Use the rules from Answer 3.18.
a.

c.

e.

b.

d.

f.

electrophilic
(All lone pairs on O and
Cl are nucleophilic.)
3.50
a.

d.

b.

c.

e.
 $\underset{\text { electrophilic }}{+\mathrm{H}_{3} \mathrm{O}^{+}} \longrightarrow$ YES
3.51 More rigid cell membranes have phospholipids with fewer $\mathrm{C}=\mathrm{C}$'s. Each $\mathrm{C}=\mathrm{C}$ introduces a bend in the molecule, making the phospholipids pack less tightly. Phospholipids without $\mathrm{C}=\mathrm{C}$'s can pack very tightly, making the membrane less fluid, and more rigid.

a. Seven amide groups [regular (unbolded) arrows]
b. OH groups bonded to $s p^{3} \mathrm{C}$'s are circled. OH groups bonded to $s p^{2}$ C's have a square.
c. Despite its size, vancomycin is water soluble because it contains many polar groups and many N and O atoms that can H -bond to $\mathrm{H}_{2} \mathrm{O}$.
d. The most acidic proton is labeled (COOH group).
e. Four functional groups capable of H -bonding are $\mathrm{ROH}, \mathrm{RCOOH}$, amides, and amines.
3.53 Because the O atom in tetrahydrofuran is in a ring, the C atoms bonded to it are kept away from the lone pairs on O . This allows the O atom to more readily hydrogen bond with water, thus increasing its solubility in water.

3.54
a.

e. An isomer that can hydrogen bond should have a higher boiling point.

The N atom of the amide is less basic because the lone pair is part of resonance with the $\mathrm{C}=\mathrm{O}$.
Atoms that can hydrogen bond to $\mathrm{H}_{2} \mathrm{O}$ are boxed in. Electrophilic carbons are labeled with (*).
most acidic $\mathrm{H}, \mathrm{pK} \mathrm{K}_{\mathrm{a}} \sim 25$
All H's are bonded to C's. Removal of the H on the C adjacent to the $\mathrm{C}=\mathrm{O}$ results in a resonance-stabilized anion.
d. Fentanyl exhibits van der Waals and dipole-dipole interactions but no hydrogen bonding, since there is no H bonded to O or N .

Chapter 3-20
3.55

The OH and CHO groups are close enough that they can intramolecularly H-bond to each other. Since the two polar functional groups are involved in intramolecular H -bonding, they are less available for H -bonding to $\mathrm{H}_{2} \mathrm{O}$. This makes \mathbf{A} less $\mathrm{H}_{2} \mathrm{O}$ soluble than \mathbf{B}, whose two functional groups are both available for H -bonding to the $\mathrm{H}_{2} \mathrm{O}$ solvent.

The OH and the CHO are too far apart to intramolecularly H -bond to each other, leaving more opportunity to H -bond with solvent.
3.56
a. melting point
HOOC
b. solubility

c. removal of the first proton $\left(\mathrm{p} K_{\mathrm{a} 1}\right)$

In maleic acid, intramolecular H -bonding stabilizes the conjugate base after one H is removed, making maleic acid more acidic than fumaric acid.
d. removal of the second proton $\left(\mathrm{p} K_{\mathrm{a} 2}\right)$

Now the dianion is held in close proximity in maleic acid, and this destabilizes the conjugate base. Thus, removing the second H in maleic acid is harder, making it a weaker acid than fumaric acid for removal of the second proton.

The two negative charges are much farther apart. This makes the dianion from fumaric acid more stable and thus $\mathrm{p} K_{\mathrm{a} 2}$ is lower for fumaric acid than maleic acid.

Chapter 4 Alkanes

Chapter Review

General facts about alkanes (4.1-4.3)

- Alkanes are composed of tetrahedral, $s \boldsymbol{s}^{3}$ hybridized C's.
- There are two types of alkanes: acyclic alkanes having molecular formula $\mathbf{C}_{n} \mathbf{H}_{2 n+2}$, and cycloalkanes having molecular formula $\mathbf{C}_{n} \mathbf{H}_{2 n}$.
- Alkanes have only nonpolar $\mathbf{C}-\mathbf{C}$ and $\mathbf{C}-\mathbf{H}$ bonds and no functional group so they undergo few reactions.
- Alkanes are named with the suffix -ane.

Classifying C's and H's (4.1A)

- Carbon atoms are classified by the number of C's bonded to them; a $1^{\circ} \mathbf{C}$ is bonded to one other \mathbf{C}, and so forth.

$1^{\circ} \mathrm{C}$

$2^{\circ} \mathrm{C}$

$3^{\circ} \mathrm{C}$

$4^{\circ} \mathrm{C}$

- Hydrogen atoms are classified by the type of carbon atom to which they are bonded; $\mathbf{a}^{\mathbf{0}} \mathbf{H}$ is bonded to a $1^{\circ} \mathrm{C}$, and so forth.

Names of alkyl groups (4.4A)

Chapter 4-2

Conformations in acyclic alkanes $(4.9,4.10)$

- Alkane conformations can be classified as staggered, eclipsed, anti, or gauche depending on the relative orientation of the groups on adjacent carbons.
eclipsed
- A staggered conformation is lower in energy than an eclipsed conformation.
- An anti conformation is lower in energy than a gauche conformation.

Types of strain

- Torsional strain-an increase in energy due to eclipsing interactions (4.9).
- Steric strain - an increase in energy when atoms are forced too close to each other (4.10).
- Angle strain - an increase in energy when tetrahedral bond angles deviate from 109.5° (4.11).

Two types of isomers

[1] Constitutional isomers-isomers that differ in the way the atoms are connected to each other (4.1A).
[2] Stereoisomers-isomers that differ only in the way atoms are oriented in space (4.13B).

Conformations in cyclohexane $(4.12,4.13)$

- Cyclohexane exists as two chair conformations in rapid equilibrium at room temperature.
- Each carbon atom on a cyclohexane ring has one axial and one equatorial hydrogen. Ringflipping converts axial H's to equatorial H's, and vice versa.

- In substituted cyclohexanes, groups larger than hydrogen are more stable in the more roomy equatorial position.

The larger CH_{3} group is equatorial.

Conformation 1
Conformation 2
more stable 95\%

5\%

- Disubstituted cyclohexanes with substituents on different atoms exist as two possible stereoisomers.
- The cis isomer has two groups on the same side of the ring, either both up or both down.
- The trans isomer has two groups on opposite sides of the ring, one up and one down.

trans isomer

cis isomer

Oxidation-reduction reactions (4.14)

- Oxidation results in an increase in the number of $\mathrm{C}-\mathrm{Z}$ bonds or a decrease in the number of $\mathrm{C}-\mathrm{H}$ bonds.

- Reduction results in a decrease in the number of $\mathbf{C}-\mathbf{Z}$ bonds or an increase in the number of C-H bonds.

Increase in C-H bonds = reduction

Chapter 4-4

Practice Test on Chapter Review

1. a. Which statement is true about compounds $\mathbf{A}-\mathbf{D}$ below?

A

B

C

D
2. \mathbf{A} and \mathbf{C} are stereoisomers.
3. \mathbf{B} and \mathbf{D} are identical.
4. \mathbf{A} and \mathbf{B} are stereoisomers
b. Which of the following statements is true about cis-1-isopropyl-2-methylcyclohexane?
5. The more stable conformation has the isopropyl group in the equatorial position and the methyl group in the axial position.
6. The more stable conformation has both the methyl and isopropyl groups in the equatorial position.
7. cis-1-Isopropyl-2-methylcyclohexane is a meso compound.
8. Statements (1) and (2) are true.
9. Statements (1), (2), and (3) are all true.
c. Rank the following conformations in order of increasing energy.

A

B

C
10. $\mathbf{C}<\mathbf{B}<\mathbf{A}$
11. $\mathbf{C}<\mathbf{A}<\mathbf{B}$
12. $\mathbf{A}<\mathbf{C}<$ B
13. $\mathbf{B}<\mathbf{A}<\mathbf{C}$
14. $\mathbf{A}<\mathbf{B}<\mathbf{C}$
15. Give the IUPAC name for each of the following compounds.
a.

b.

16. How are the molecules in each pair related? Are they constitutional isomers, stereoisomers, identical, or not isomers?
a.
 and

b.

and

c.

and

17. Rank the following conformations in order of increasing energy. Label the conformation of lowest energy as $\mathbf{1}$, the highest energy as $\mathbf{4}$, and the conformations of intermediate energy as $\mathbf{2}$ and $\mathbf{3}$.

A

B

C

D
5. Consider the following disubstituted cyclohexane drawn below:

a. Draw the more stable chair conformation for the cis isomer.
b. Draw the more stable chair conformation for the trans isomer.

Answers to Practice Test

1. a. 4
2. a. 5-isobutyl-2,6-dimethyl-6propyldecane
b. 1
c. 2 propylcyclooctane
3. a. identical
b. constitutional isomers c. stereoisomers
4. $\mathbf{A}-3 \quad$ 5. a.

B-4
C-2
D-1
b.

Chapter 4-6

Answers to Problems

4.1 The general molecular formula for an acyclic alkane is $\mathbf{C}_{n} \mathbf{H}_{2 n+2}$.

Number of C atoms $=n$	$\mathbf{2 n + 2}$	Number of H atoms
23	$2(23)+2=$	48
25	$2(25)+2=$	52
27	$2(27)+2=$	56

4.2 2-Methylbutane has 4 C's in a row with a 1 C branch.
a.

2-methylbutane
 2-methylbutane
c. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$

5 C's in a row pentane

4.3 To classify a carbon atom as $1^{\circ}, 2^{\circ}, 3^{\circ}$, or 4° determine how many carbon atoms it is bonded to $\left(1^{\circ} \mathrm{C}=\right.$ bonded to one other $\mathrm{C}, \mathbf{2}^{\circ} \mathrm{C}=$ bonded to two other C 's, $3^{\circ} \mathrm{C}=$ bonded to three other C's, $4^{\circ} \mathbf{C}=$ bonded to four other C^{\prime} s). Re-draw if necessary to see each carbon clearly.

To classify a hydrogen atom as $1^{\circ}, 2^{\circ}$, or 3°, determine if it is bonded to a $1^{\circ}, 2^{\circ}$, or $3^{\circ} \mathrm{C}$ (a $1^{\circ} \mathrm{H}$ is bonded to a $1^{\circ} \mathrm{C}$; a $2^{\circ} \mathrm{H}$ is bonded to a $2^{\circ} \mathrm{C}$; a $3^{\circ} \mathrm{H}$ is bonded to a $3^{\circ} \mathrm{C}$). Re-draw if necessary.
a.

[2] $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}$

[3]

[4]

$3^{\circ} \mathrm{C}$
All other C's are $1^{\circ} \mathrm{C}$'s.
re-draw

b.

[2]

[3]

all $1^{\circ} \mathrm{H}$'s
[4]

4.4 Use the definition of $1^{\circ}, 2^{\circ}, 3^{\circ}$, or 4° carbon atoms from Answer 4.3.

4.5 Constitutional isomers differ in the way the atoms are connected to each other. To draw all the constitutional isomers:
[1] Draw all of the C's in a long chain.
[2] Take off one C and use it as a substituent. (Don't add it to the end carbon: this re-makes the long chain.)
[3] Take off two C's and use these as substituents, etc.

Five constitutional isomers of molecular formula $\mathrm{C}_{6} \mathrm{H}_{14}$:

4.6 Draw each alkane to satisfy the requirements.
a.

b.
 All other C's are $\mathbf{2}^{\circ} \mathbf{C}$'s.

$0^{\circ} \mathrm{H} \quad 2^{\circ} \mathrm{H}$
4.7 Draw each compound as a skeletal structure to compare the compounds.

4.8 Use the steps from Answer 4.5 to draw the constitutional isomers.

Five constitutional isomers of molecular formula $\mathrm{C}_{5} \mathrm{H}_{10}$ having one ring:
[1]

[2]

$\stackrel{\text { CH }}{\text { [3] }}$

Chapter 4-8
4.9 Follow these steps to name an alkane:
[1] Name the parent chain by finding the longest C chain.
[2] Number the chain so that the first substituent gets the lower number. Then name and number all substituents, giving like substituents a prefix (di, tri, etc.).
[3] Combine all parts, alphabetizing the substituents, ignoring all prefixes except iso.
[1]
a.

8 carbons $=$ octane
[2] $\quad \mathrm{CH}_{3}$
$\mathrm{CH}_{3}-\mathrm{C}-\mathrm{CH}_{3}$

[3] 4-tert-butyl-4-methyloctane

6 carbons $=$ hexane
[1] $\mathrm{CH}_{2} \mathrm{CH}_{3}$

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}-\mathrm{C}_{1}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\underset{+}{\mathrm{C}}-\mathrm{CH}_{3}$							
$\mathbf{9}$	8	7	6	H	5	4	H
3							

c. $\frac{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\underset{+}{\mathrm{C}}-\mathrm{CH}_{3}}{\mathrm{H}}+\frac{\mathrm{H}}{9 \text { carbons }=\text { nonane }}$
[1]
d.

[2]

[3] 2,4-dimethylheptane
4.10 Use the steps in Answer 4.9 to name each alkane.
a. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}$

C.
[1]

longest chain $=7$ carbons $=$ heptane
Number so there are more substituents. Pick the upper option.
[2]

3-ethyl 5-methyl
[3] 3-ethyl-2,5-dimethylheptane
2-methyl
2-methyl

[3] 5-sec-butyl-3-ethyl-2,7-dimethyldecane
d.

4.11 To work backwards from a name to a structure:

[1] Find the parent name and draw that number of C's. Use the suffix to identify the functional group (-ane = alkane).
[2] Arbitrarily number the C's in the chain. Add the substituents to the appropriate C's.
[3] Re-draw with H's to make C's have four bonds.
a. 3-methylhexane
[1] 6 carbon alkane

b. 3,3-dimethylpentane
[1]

c. 3,5,5-trimethyloctane

d. 3-ethyl-4-methylhexane [1]

[2]

[3]

[3]

[2]

[3]

[3]

Chapter 4-10

4.12 Use the steps in Answer 4.9 to name each alkane.

[2]
no substituents, skip [2]
[3] hexane

[3] 2-methyIpentane
5 carbons $=$ pentane

5 carbons = pentane

[3] 2,2-dimethylbutane

[3] 3-methylpentane
[3] 2,3-dimethylbutane
4.13 Follow these steps to name a cycloalkane:
[1] Name the parent cycloalkane by counting the C's in the ring and adding cyclo-
[2] Numbering:
[2a] Number around the ring beginning at a substituent and giving the second substituent the lower number.
[2b] Number to assign the lower number to the substituents alphabetically.
[2c] Name and number all substituents, giving like substituents a prefix (di, tri, etc.).
[3] Combine all parts, alphabetizing the substituents, ignoring all prefixes except iso. (Remember: If a carbon chain has more C's than the ring, the chain is the parent, and the ring is a substituent.)
a.
[1]

Number so the substituents are at C1.
b.
[1]

5 carbons in ring $=$ cyclopentane
c.
[1]

Number so the first substituent is at C 1 , second at C 2 .
[1]

6 carbons in ring $=$ cyclohexane
[1]
e.

[1]
 cyclohexane
d.
f.

4-methy
Number so the earlier alphabetical substituent is at C1, butyl before methyl.
[2]

[3] 1-sec-butyl-2-isopropylcyclohexane

Number so the earlier alphabetical substituent is at C 1 , butyl before isopropyl.
[2]

Number so the
cyclopropyl is at C 1 .

[3] 1,2,3-trimethylcyclopentane

Chapter 4-12
4.14 To draw the structures, use the steps in Answer 4.11.
a. 1,2-dimethylcyclobutane
[1] 4 carbon cycloalkane

[2]

[3]

b. 1,1,2-trimethylcyclopropane
[1] 3 carbon cycloalkane

[2]

[3]

c. 4-ethyl-1,2-dimethylcyclohexane
[1] 6 carbon cycloalkane

[2]

[3]

d. 1-sec-butyl-3-isopropylcyclopentane
[1] 5 carbon cycloalkane

[2]

[3]

e. 1,1,2,3,4-pentamethylcycloheptane
[1] 7 carbon cycloalkane

[2] $5 \mathrm{CH}_{3}$'s

[3]

4.15 Compare the number of C's and surface area to determine relative boiling points. Rules:
[1] Increasing number of C's = increasing boiling point.
[2] Increasing surface area = increasing boiling point (branching decreases surface area).

Increasing boiling point: $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}\left(\mathrm{CH}_{3}\right)_{2}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}<\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}<\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3}$
4.16 To draw a Newman projection, visualize the carbons as one in front and one in back of each other. The $\mathrm{C}-\mathrm{C}$ bond is not drawn. There is only one staggered and one eclipsed conformation.

4.17

$$
\begin{aligned}
& \text { To calculate } \mathrm{H}, \mathrm{CH}_{3} \text { destabilization: } \\
& \hline 14 \mathrm{~kJ} / \mathrm{mol} \text { (total) - } \\
& 8.0 \mathrm{~kJ} / \mathrm{mol} \text { for } 2 \mathrm{H}, \mathrm{H} \text { eclipsing interactions } \\
& =6 \mathrm{~kJ} / \mathrm{mol} \text { for one } \mathrm{H}, \mathrm{CH}_{3} \text { eclipsing interaction }
\end{aligned}
$$

4.18 To determine the energy of conformations keep two things in mind:
[1] Staggered conformations are more stable than eclipsed conformations.
[2] Minimize steric interactions: keep large groups away from each other.
The highest energy conformation is the eclipsed conformation in which the two largest groups are eclipsed. The lowest energy conformation is the staggered conformation in which the two largest groups are anti.

Chapter 4-14
4.19 To determine the most and least stable conformations, use the rules from Answer 4.18.
a. 1,2-dichloroethane

staggered, anti

6
eclipsed

staggered, gauche

highest energy Cl groups eclipsed least stable

b.

4.20 Add the energy increase for each eclipsing interaction to determine the destabilization.
a.

$1 \mathrm{H}, \mathrm{H}$ interaction $=$	$4.0 \mathrm{~kJ} / \mathrm{mol}$
$2 \mathrm{H}, \mathrm{CH}_{3}$ interactions	
$(2 \times 6.0 \mathrm{~kJ} / \mathrm{mol})=$	$12.0 \mathrm{~kJ} / \mathrm{mol}$
Total destabilization $=$	$16 \mathrm{~kJ} / \mathrm{mol}$

b.

$3 \mathrm{H}, \mathrm{CH}_{3}$ interactions
$(3 \times 6.0 \mathrm{~kJ} / \mathrm{mol})=\mathbf{1 8} \mathbf{~ k J} / \mathrm{mol}$
Total destabilization
4.21 Two points:

- Axial bonds point up or down, while equatorial bonds point out.
- An $u p$ carbon has an axial $u p$ bond, and a down carbon has an axial down bond.

Up carbons are dark circles. Down carbons are clear circles.
4.22 Draw the second chair conformation by flipping the ring.

- The up carbons become down carbons, and the axial bonds become equatorial bonds.
- Axial bonds become equatorial, but up bonds stay up; that is, an axial up bond becomes an equatorial $u p$ bond.
- The conformation with larger groups equatorial is the more stable conformation and is present in higher concentration at equilibrium.

4.23 Larger axial substituents create unfavorable diaxial interactions, whereas equatorial groups have more room and are favored.

Chapter 4-16

larger substituent more important to be equatorial
more compact substituent less important to be equatorial
The axial conformation containing the $\mathrm{C} \equiv \mathrm{CH}$ group is not as
 unstable as the axial conformation containing the $\mathrm{CH}_{2} \mathrm{CH}_{3}$, so it is present in higher concentration at equilibrium.
4.24 Wedges represent "up" groups in front of the page, and dashes are "down" groups in back of the page. Cis groups are on the same side of the ring, and trans groups are on opposite sides of the ring.
a. cis-1,2-dimethylcyclopropane

or

cis = same side of the ring both groups on wedges or both on dashes
b. trans-1-ethyl-2-methylcyclopentane

trans = opposite sides of the ring one group on a wedge, one group on a dash
4.25 Cis and trans isomers are stereoisomers.
cis-1,3-diethylcyclobutane

cis = same side of the ring both groups on wedges or both on dashes
a. trans-1,3-diethylcyclobutane

trans = opposite sides of the ring one group on a wedge, one group on a dash
b. cis-1,2-diethylcyclobutane

4.26 To classify a compound as a cis or trans isomer, classify each non-hydrogen group as up or down. Groups on the same side = cis isomer; groups on opposite sides = trans isomer.

one group up, one down =
trans isomer
up bond

(equatorial)
one group up, one down =
trans isomer
4.27
a.

groups on same side cis isomer
b.

two chair conformations for the cis isomer
 groups on opposite sides trans isomer (one possibility)

Same stability since they both have one equatorial, one axial CH_{3} group.
4.28
c.
 two chair conformations for the trans isomer
d. The trans isomer is more stable because it can have both methyl groups in the more roomy equatorial position.
 more stable

. 2

a.

1,1-disubstituted

c.
trans-1,3-disubstituted
b.

cis-1,2-disubstituted
d.
(equatorial)

trans-1,4-disubstituted
4.29 Oxidation results in an increase in the number of $\mathrm{C}-\mathrm{Z}$ bonds, or a decrease in the number of $\mathrm{C}-\mathrm{H}$ bonds.
Reduction results in a decrease in the number of $\mathrm{C}-\mathrm{Z}$ bonds, or an increase in the number of $\mathrm{C}-\mathrm{H}$ bonds.
a.

Decrease in the number of $\mathrm{C}-\mathrm{H}$ bonds. Increase in the number of $\mathrm{C}-\mathrm{O}$ bonds. Oxidation
c.

No change in the number of $\mathrm{C}-\mathrm{O}$ or C-H bonds. Neither
b.

Decrease in the number of $\mathrm{C}-\mathrm{O}$ bonds. Reduction
d.

Decrease in the number of $\mathrm{C}-\mathrm{O}$ bonds. Increase in the number of $\mathrm{C}-\mathrm{H}$ bonds.
Reduction
4.30 The products of a combustion reaction of a hydrocarbon are always the same: CO_{2} and $\mathbf{H}_{\mathbf{2}} \mathbf{O}$.
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}+5 \mathrm{O}_{2} \xrightarrow{\text { flame }} 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}+$ heat

Chapter 4-18
b.

4.31 "Like dissolves like." Beeswax is a lipid, so it will be more soluble in nonpolar solvents. $\mathrm{H}_{2} \mathrm{O}$ is very polar, ethanol is slightly less polar, and chloroform is least polar. Beeswax is most soluble in the least polar solvent.
$\xrightarrow[\text { Increasing polarity }]{\substack{\text { Increasing solubility of beeswax }}}$
4.32 Re-draw the model as a skeletal structure. The longest chain has 15 C 's, making it a derivative of pentadecane. Numbering from either direction gives the same numbers.
(15 C's $-\cdots-$ pentadecane
4.33 Re-draw each alkane as a skeletal structure, and use the steps in Answer 4.9 to name each compound. Use the definitions in Answer 4.3 to classify C's.
a.

4.34 Re-draw the ball-and-stick model as a chair form.
a.

b. CH_{3} on Cl and Br on C 2 are both down, making them cis.
c. Br on C 2 and $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ on C 4 are both down, making them cis.
d. Second chair form:

4.35
a.

b.

4.36 Use the rules from Answer 4.3.
a. [1]

b. [1]

[2]

4.37

One possibility:
a.

b.

c. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$
d. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}$
4.38
a. Five constitutional isomers of molecular formula $\mathrm{C}_{4} \mathrm{H}_{8}$:
 $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$ $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$

Chapter 4-20
b. Nine constitutional isomers of molecular formula $\mathrm{C}_{7} \mathrm{H}_{16}$:

c. Twelve constitutional isomers of molecular formula $\mathrm{C}_{6} \mathrm{H}_{12}$ containing one ring:

4.39 Use the steps in Answers 4.9 and 4.13 to name the alkanes.
a. [1] $_{\substack{ \\\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \\ 8 \text { carbons = octane }} \stackrel{\mathrm{CH}_{3}}{\text { Cl }} \mathrm{CH}_{2} \mathrm{CH}_{3}}$

[3] 5-ethyl-3-methyloctane

[3] 3,3,6-triethyl-7-methyldecane
c. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

[3] 3,3,4,4-tetramethylheptane
d.

$\left.\mathrm{H}_{2} \mathrm{CH}_{3}\right)_{2}$
[2]

[3] 3,3-diethyl-4-methyl-5-propyloctane
[1]
e.
$\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{CCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
[1] \mid re-draw

[2]

[3] 3,3-diethyl-4-methylheptane
f. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$

[3] 3,4-dimethyl-5-propyInonane
g. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{4} \mathrm{C}$

[3] 4,4-dipropylheptane
h.

[3] 6-isopropyl-3-methyIdecane
i.

C2] 4-isopropyl

Chapter 4-22
k.

2,2,5-trimethyl

2,2,5-trimethylheptane

I.

$=$

3-cyclobutylpentane

1-sec-butyl-2-isopropylcyclopentane
2-isopropyl
n.

4.40

4.41 Use the steps in Answer 4.11 to draw the structures.
a. 3-ethyl-2-methylhexane
[1] $6 C$ chain
$\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}$
[2]

[3]

b. sec-butylcyclopentane
[1]
5 C ring
c. 4-isopropyl-2,4,5-trimethylheptane

d. cyclobutylcycloheptane
[1] 7 C cycloalkane

e. 3-ethyl-1,1-dimethylcyclohexane
[1]

f. 4-butyl-1,1-diethylcyclooctane
[1] 8 C cycloalkane

g. 6-isopropyl-2,3-dimethylnonane

h. 2,2,6,6,7-pentamethyloctane
[1]

i. cis-1-ethyl-3-methylcyclopentane
[1]

[2]

[2]
isopropyl on C 4

methyls on C2, C4, and C5
[3]

[2]

2 ethyl groups

[2]
[2]

[3]

[3]

[2]

[3]

5 methyl groups
[2]

[3]

[2]

Chapter 4-24
j. trans-1-tert-butyl-4-ethylcyclohexane
[1] 6 C ring

[2]

4.42 Undecane has 11 C 's in an unbranched long chain, with molecular formula $\mathrm{C}_{11} \mathrm{H}_{24}$. A compound that is not an isomer must have a different molecular formula. Only (c) has a different molecular formula.
a.

b.

c.
 $\mathrm{C}_{10} \mathrm{H}_{22}$
e.

2,2,3,3,4,4-hexamethylpentane
$\mathrm{C}_{11} \mathrm{H}_{24}$
not an isomer
d.

3,4-diethylheptane $\mathrm{C}_{11} \mathrm{H}_{24}$ isomer
4.43 Draw the compounds.

g. 3-butyl-2,2-dimethylhexane

f. 5,5,6-trimethyloctane

Numbered incorrectly.
Re-number so methyls are at C3 and C4.

2-ethyl-1,4-dimethylcycloheptane

h. 1,3-dimethylbutane

4.44
a.

b.

|re-draw

3-ethyl-3-methylpentane
c.

|re-draw

4,4-diethyl-5-methyloctane
4.45 Use the rules from Answer 4.15.
a.
 3C's

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ 4 C 's

owest boiling point
highest boiling point
b. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}$
most branching
lowest boiling point
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$
least branching highest boiling point

4.46 a.

$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3}$
no branching $=$ higher surface area higher boiling point

$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CC}\left(\mathrm{CH}_{3}\right)_{3}$
branching = lower surface area lower boiling point
more spherical, better packing = higher melting point
b. There is a 159° difference in the melting points, but only a 20° difference in the boiling points because the symmetry in $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CC}\left(\mathrm{CH}_{3}\right)_{3}$ allows it to pack more tightly in the solid, thus requiring more energy to melt. In contrast, once the compounds are in the liquid state, symmetry is no longer a factor, the compounds are isomeric alkanes, and the boiling points are closer together.
4.47
a.

1 gauche $\mathrm{CH}_{3}, \mathrm{CH}_{3}$ $=3.8 \mathrm{~kJ} / \mathrm{mol}$ of destabilization

higher energy
2 gauche $\mathrm{CH}_{3}, \mathrm{CH}_{3}$
$3.8 \mathrm{~kJ} / \mathrm{mol} \times 2=7.6 \mathrm{~kJ} / \mathrm{mol}$
of destabilization
Energy difference $=$
$7.6 \mathrm{~kJ} / \mathrm{mol}-3.8 \mathrm{~kJ} / \mathrm{mol}=3.8 \mathrm{~kJ} / \mathrm{mol}$

2 gauche $\mathrm{CH}_{3}, \mathrm{CH}_{3}$ $3.8 \mathrm{~kJ} / \mathrm{mol} \times 2=$ $7.6 \mathrm{~kJ} / \mathrm{mol}$ of destabilization
or

higher energy 3 eclipsed $\mathrm{H}, \mathrm{CH}_{3}$ $6 \mathrm{~kJ} / \mathrm{mol} \times 3=18 \mathrm{~kJ} / \mathrm{mo}$ of destabilization

Energy difference $=$
$18 \mathrm{~kJ} / \mathrm{mol}-7.6 \mathrm{~kJ} / \mathrm{mol}=10.4 \mathrm{~kJ} / \mathrm{mol}$
4.48 Use the rules from Answer 4.18 to determine the most and least stable conformations.
a. $\mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

most stable
All staggered conformations are equal in energy.
All eclipsed conformations are equal in energy.
4.49
a.

b.

c.

[1]

[2] $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{CHCH}_{2} \mathrm{CH}_{3}$
most stable

6

5

least stable

Chapter 4-28

4.51 Two types of strain:

- Torsional strain is due to eclipsed groups on adjacent carbon atoms.
- Steric strain is due to overlapping electron clouds of large groups (e.g., gauche interactions).

two sites
three bulky methyl groups close $=$
steric strain
b.

eclipsed conformation = torsional strain
c.

two bulky ethyl groups close $=$ steric strain eclipsed conformation = torsional strain
4.52 The barrier to rotation is equal to the difference in energy between the highest energy eclipsed and lowest energy staggered conformations of the molecule.
a. $\mathrm{CH}_{3}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$

most stable

east stable

Destabilization energy $=$
$2 \mathrm{H}, \mathrm{CH}_{3}$ eclipsing interactions
$2(6.0 \mathrm{~kJ} / \mathrm{mol})=12.0 \mathrm{~kJ} / \mathrm{mol}$
$1 \mathrm{H}, \mathrm{H}$ eclipsing interaction $=4.0 \mathrm{~kJ} / \mathrm{mol}$
Total destabilization $=16.0 \mathrm{~kJ} / \mathrm{mol}$
$16.0 \mathrm{~kJ} / \mathrm{mol}=$ rotation barrier
b. $\mathrm{CH}_{3}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$

most stable

least stable

Destabilization energy =
$3 \mathrm{H}, \mathrm{CH}_{3}$ eclipsing interactions
$3(6.0 \mathrm{~kJ} / \mathrm{mol})=18.0 \mathrm{~kJ} / \mathrm{mol}$
Total destabilization $=18.0 \mathrm{~kJ} / \mathbf{m o l}$
$18.0 \mathrm{~kJ} / \mathrm{mol}=$ rotation barrier
4.53

most stable

least stable
$2 \mathrm{H}, \mathrm{H}$ eclipsing interactions $=2(4.0 \mathrm{~kJ} / \mathrm{mol})=8.0 \mathrm{~kJ} / \mathrm{mol}$
Since the barrier to rotation is $15 \mathrm{~kJ} / \mathrm{mol}$, the difference between this value and the destabilization due to H, H eclipsing is the destabilization due to H, Cl eclipsing.
$15.0 \mathrm{~kJ} / \mathrm{mol}-8.0 \mathrm{~kJ} / \mathrm{mol}=7.0 \mathrm{~kJ} / \mathrm{mol}$ destabilization due to H, Cl eclipsing
4.54 The gauche conformation can intramolecularly hydrogen bond, making it the more stable conformation.

Hydrogen bonding can occur only in the gauche conformation, making it more stable.
4.55
a

b.
dow

c. HO

one up, one down =
2]

c.

d.

[3]
a.

b.

c.

Chapter 4-30
4.56

4.57 A cis isomer has two groups on the same side of the ring. The two groups can be drawn both up or both down. Only one possibility is drawn. A trans isomer has one group on one side of the ring and one group on the other side. Either group can be drawn on either side. Only one possibility is drawn.
[1]

[2]

[3]
a.

cis
trans
a.

cis
trans
b. cis isomer

both groups equatorial
more stable
c. trans isomer

larger group equatoria more stable

b. cis isomer

larger group equatorial more stable
c. trans isomer

d.

The trans isomer is more stable than the cis since one conformation has both groups equatorial.
The cis isomer is more stable than the trans since one conformation has both groups equatorial.
d.

4.58

4.59
a.

All groups are equatorial.

4.60

a.

More groups are equatorial.
b.

glucose All groups are equatorial more stable
galactose
c.
 constitutional isomer
d.

stereoisomer
4.61
a.

c.

1 down, 1 up $=\begin{gathered}1 \text { down, } 1 \text { up }= \\ \text { trans } \\ \text { trans } \\ \text { same arrangement in three dimensions }\end{gathered}$. identical

b.
different arrangement in three dimensions stereoisomers
d.
 and

same molecular formula $\mathrm{C}_{10} \mathrm{H}_{20}$ different connectivity constitutional isomers

Chapter 4-32

4.62

a.

3-ethyl-2-methylpentane

same molecular formula
same name
identical molecules
b.

and

same molecular formula different arrangement of atoms constitutional isomers
4.63

One possibility:

a.

constitutional isomer

stereoisomer

b.

C.

4.64

4.65 Use the definitions from Answer 4.29 to classify the reactions.
a.

c.

b.
$\mathrm{CH}_{2}=\mathrm{CH}_{2}$ \qquad $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$
Decrease in the number of $\mathrm{C}-\mathrm{H}$ bonds. Oxidation
d. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ \qquad $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
Loss of one $\mathrm{C}-\mathrm{O}$
bond and one $\mathrm{C}-\mathrm{H}$ bond. Neither
4.66 Use the rule from Answer 4.30.
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \xrightarrow[11 \mathrm{O}_{2}]{\text { flame }} 7 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}+$ heat
b.

4.67

a.

[1] increase in C-O bonds oxidation reaction
[2] loss of $1 \mathrm{C}-\mathrm{O}$ bond loss of $1 \mathrm{C}-\mathrm{H}$ bond neither
b. Phenol is more water soluble than benzene because it is polar (contains an $\mathbf{O}-\mathbf{H}$ group) and can hydrogen bond with water, whereas benzene is nonpolar and cannot hydrogen bond.

Chapter 4-34
4.68 Lipids contain many nonpolar $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$ bonds and few polar functional groups.
a.
 many polar functional groups not a lipid

b.

4.69

4.70 The mineral oil can prevent the body's absorption of important fat-soluble vitamins. The vitamins dissolve in the mineral oil, and are thus not absorbed. Instead, they are expelled with the mineral oil.
4.71 Cyclopropane has larger angle strain than cyclobutane because the internal angles in the threemembered ring $\left(60^{\circ}\right)$ are smaller than they are in cyclobutane. Although cyclobutane is not flat, as shown in Figure 4.11, there are more $\mathrm{C}-\mathrm{H}$ bonds than there are in cyclopropane, so there are more sites of torsional strain. Thus cyclopropane has more angle strain but less torsional strain. The result is that both cyclopropane and cyclobutane have roughly similar strain energies.
4.72 The amide in the four-membered ring has 90° bond angles giving it angle strain, which makes it more reactive.
penicillin G

4.73

Example:

Although I is a much bigger atom than Cl , the $\mathrm{C}-\mathrm{I}$ bond is also much longer than the $\mathrm{C}-\mathrm{Cl}$ bond. As a result the eclipsing interaction of the H and I atoms is not very much different in magnitude from the H, Cl eclipsing interaction.

4.74

decalin

trans-decalin

The trans isomer is more stable since the carbon groups at the ring junction are both in the favorable equatorial position.

This bond is axial, creating unfavorable 1,3-diaxial interactions.
4.75 Re-draw the ball-and-stick model using chair forms.
a. axia

4.76
a, b.

c. The circled H's at one ring fusion are cis. The boxed in CH_{3} and H at the second ring fusion are trans.

All bonds above the ring are on wedges and all bonds below the ring are on dashed lines.

Chapter 4-36
4.77

pentylcyclopentane

(1-methylbutyl)cyclopentane

(2-methylbutyl)cyclopentane (2,2-dimethylpropyl)cyclopentane
(1-ethylpropyl)cyclopentane
(1
(1,2-dimethylpropyl)cyclopentane
(3-methylbutyl)cyclopentane
4.78
a.

2,3-dimethylbicyclo[3.1.1]heptane
b.

2-ethyl-7,7-dimethylbicyclo[2.2.1]heptane
c.

1-methyl-7-propylbicyclo[3.2.1]octane
d.

6-ethyl-3,3-dimethylbicyclo[3.2.0]heptane

Chapter 5 Stereochemistry

Chapter Review

Isomers are different compounds with the same molecular formula (5.2, 5.11).

[1] Constitutional isomers-isomers that differ in the way the atoms are connected to each other. They have:

- different IUPAC names
- the same or different functional groups
- different physical and chemical properties.
[2] Stereoisomers-isomers that differ only in the way atoms are oriented in space. They have the same functional group and the same IUPAC name except for prefixes such as cis, trans, R, and S.
- Enantiomers-stereoisomers that are nonsuperimposable mirror images of each other (5.4).
- Diastereomers-stereoisomers that are not mirror images of each other (5.7).

A and \mathbf{B} are diastereomers of \mathbf{C} and \mathbf{D}.

Assigning priority (5.6)

- Assign priorities $(1,2,3$, or 4$)$ to the atoms directly bonded to the stereogenic center in order of decreasing atomic number. The atom of highest atomic number gets the highest priority (1).
- If two atoms on a stereogenic center are the same, assign priority based on the atomic number of the atoms bonded to these atoms. One atom of higher atomic number determines a higher priority.
- If two isotopes are bonded to the stereogenic center, assign priorities in order of decreasing mass number.
- To assign a priority to an atom that is part of a multiple bond, treat a multiply bonded atom as an equivalent number of singly bonded atoms.

Chapter 5-2

Some basic principles

- When a compound and its mirror image are superimposable, they are identical achiral compounds. A plane of symmetry in one conformation makes a compound achiral (5.3).
- When a compound and its mirror image are not superimposable, they are different chiral compounds called enantiomers. A chiral compound has no plane of symmetry in any conformation (5.3).
- A tetrahedral stereogenic center is a carbon atom bonded to four different groups $(5.4,5.5)$.
- For \boldsymbol{n} stereogenic centers, the maximum number of stereoisomers is $\mathbf{2}^{\boldsymbol{n}}$ (5.7).

Optical activity is the ability of a compound to rotate plane-polarized light (5.12).

- An optically active solution contains a chiral compound.
- An optically inactive solution contains one of the following:
- an achiral compound with no stereogenic centers.
- a meso compound-an achiral compound with two or more stereogenic centers.
- a racemic mixture-an equal amount of two enantiomers.

The prefixes R and S compared with d and l

The prefixes R and S are labels used in nomenclature. Rules on assigning R, S are found in Section 5.6.

- An enantiomer has every stereogenic center opposite in configuration. If a compound with two stereogenic centers has the R, R configuration, then its enantiomer has the S, S configuration.
- A diastereomer of this same compound has either the R, S or S, R configuration; one stereogenic center has the same configuration and one is opposite.
The prefixes d (or +) and l (or -) tell the direction a compound rotates plane-polarized light (5.12).
- $d($ or +) stands for dextrorotatory, rotating polarized light clockwise.
- $\quad l($ or -$)$ stands for levorotatory, rotating polarized light counterclockwise.

The physical properties of isomers compared (5.12)

Type of isomer	Physical properties
Constitutional isomers	Different
Enantiomers	Identical except the direction of rotation of polarized light
Diastereomers	Different
Racemic mixture	Possibly different from either enantiomer

Equations

- Specific rotation (5.12C):

$$
\begin{aligned}
& \begin{array}{l}
\text { specific } \\
\text { rotation }
\end{array}=[\alpha]=\frac{\alpha}{l \times c}\left[\begin{array}{l}
\alpha=\text { observed rotation }\left({ }^{\circ}\right) \\
l=\text { length of sample tube }(\mathrm{dm}) \\
c=\text { concentration }(\mathrm{g} / \mathrm{mL})
\end{array}\left[\begin{array}{l}
\mathrm{dm}=\text { decimeter } \\
1 \mathrm{dm}=10 \mathrm{~cm}
\end{array}\right]\right.
\end{aligned}
$$

- Enantiomeric excess (5.12D):

$$
\begin{aligned}
e e & =\% \text { of one enantiomer }-\% \text { of other enantiomer } \\
& =\frac{[\alpha] \text { mixture }}{[\alpha] \text { pure enantiomer }} \times 100 \%
\end{aligned}
$$

Practice Test on Chapter Review

1.a. Which of the following statements is true for compounds A-D below?

A

B

C

D

1. A and \mathbf{B} are separable by physical methods such as distillation.
2. A and \mathbf{C} are separable by physical methods such as distillation.
3. A and \mathbf{D} are separable by physical methods such as distillation.
4. Statements (1) and (2) are both true.
5. Statements (1), (2), and (3) are all true.
b. Which of the following statements is true about compounds $\mathbf{A}-\mathbf{C}$ below?

A

B

C

Chapter 5-4

1. \mathbf{A} and \mathbf{B} are enantiomers.
2. \mathbf{A} and \mathbf{C} are enantiomers.
3. An equal mixture of \mathbf{B} and \mathbf{C} is optically active.
4. Statements (1) and (2) are true.
5. Statements (1), (2), and (3) are all true.
c. Which compound is a diastereomer of \mathbf{A} ?

A

B

C

D
6. B only
7. C only
8. D only
9. Both B and C
10. Compounds B, C, and D
11. Rank the following four groups around a stereogenic center in order of decreasing priority. Rank the highest priority group as $\mathbf{1}$, the lowest priority group as $\mathbf{4}$, and the two groups of intermediate priority as 2 and 3.

A
$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$
B
$-\mathrm{COOH}$
C
$-\mathrm{CH}_{2} \mathrm{OH}$
D
12. Label each stereogenic center in the following compound as R or S.

13. State how the compounds in each pair are related to each other. Choose from constitutional isomers, enantiomers, diastereomers, or identical compounds.
a.
 and

b.
 and

c.
 and

14. The enantiomeric excess of a mixture of \mathbf{A} and \mathbf{B} is 62% with \mathbf{A} in excess. How much of \mathbf{A} and \mathbf{B} are present in the mixture?

Answers to Practice Test

1. a. 1
2. $\mathbf{A}-1$
b. 2
B-4
C-2
3. a. S
b. S
4. a. diastereomers
c. 3
D-3
b. enantiomers
5. $81 \% \mathbf{A}$
19% B

Answers to Problems

5.1 Cellulose consists of long chains held together by intermolecular hydrogen bonds forming sheets that stack in extensive three-dimensional arrays. Most of the OH groups in cellulose are in the interior of this three-dimensional network, unavailable for hydrogen bonding to water. Thus, even though cellulose has many OH groups, its three-dimensional structure prevents many of the OH groups from hydrogen bonding with the solvent and this makes it water insoluble.
5.2 Constitutional isomers have atoms bonded to different atoms.

Stereoisomers differ only in the three-dimensional arrangement of atoms.
a.

2,3-dimethylpentane
and

2,4-dimethylpentane
different connectivity of atoms
different names
constitutional isomers
b.
four-membered ring three-membered ring
different connectivity of atoms constitutional isomers
c.

and

different connectivity of atoms constitutional isomers
d.

trans isomer
and

Both are 1,2-dimethylcyclobutane, but the CH_{3} groups are oriented differently. stereoisomers
5.3 Draw the mirror image of each molecule by drawing a mirror plane and then drawing the molecule's reflection. A chiral molecule is one that is not superimposable on its mirror image. A molecule with one stereogenic center is always chiral. A molecule with zero stereogenic centers is not chiral (in general).

Chapter 5-6
a.

c.

b.

stereogenic center
nonsuperimposable mirror images
d.

stereogenic center
nonsuperimposable mirror images
chiral molecules
chiral molecules
5.4 A plane of symmetry cuts the molecule into two identical halves.
a.
2 H's are behind one another.

b.

c.

d.

5.5 Rotate around the middle $\mathrm{C}-\mathrm{C}$ bond so that the Br atoms are eclipsed.

5.6 To locate a stereogenic center, omit all C's with two or more H's, all $s p$ and $s p^{2}$ hybridized atoms, and all heteroatoms. (In Chapter 25, we will learn that the N atoms of ammonium salts $\left[\mathrm{R}_{4} \mathrm{~N}^{+} \mathrm{X}^{-}\right.$] can sometimes be stereogenic centers.) Then evaluate any remaining atoms. A tetrahedral stereogenic center has a carbon bonded to four different groups.
a.

b.

This C is bonded to 4 different groups.
1 stereogenic center
c.

0 stereogenic centers
d.

e.

stereogenic center
f.

5.7 Use the directions from Answer 5.6 to locate the stereogenic centers.

5.8 Find the C bonded to four different groups in each molecule. At the stereogenic center, draw two bonds in the plane of the page, one in front (on a wedge), and one behind (on a dash). Then draw the mirror image (enantiomer).
a.

c. $\mathrm{CH}_{3} \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COOH}$

b.

Chapter 5-8
5.9 Use the directions from Answer 5.6 to locate the stereogenic centers.

b.

Each labeled C H, Cl bonded to. $\mathrm{H}, \mathrm{Cl}, \mathrm{CH}_{2}, \mathrm{CHCl}$: 2 stereogenic centers
d.

5.10
a.

b.

All stereogenic C's are circled. Each C is $s p^{3}$ hybridized and bonded to 4 different groups.
5.11 Assign priority based on atomic number: atoms with a higher atomic number get a higher priority. If two atoms are the same, look at what they are bonded to and assign priority based on the atomic number of these atoms.
a. $-\mathrm{CH}_{3},-\underset{\uparrow}{\mathrm{CH}} \mathrm{H}_{2} \mathrm{CH}_{3}$
higher priority
c. $-\mathrm{H},-\mathrm{D}$ higher priority
b. $\stackrel{-\mathrm{I},-\mathrm{Br}}{\uparrow}$
higher priority
d. $-\underset{\uparrow}{-} \mathrm{CH}_{2} \mathrm{Br},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$
higher priority

higher priority

5.12 Rank by decreasing priority. Lower atomic number = lower priority.

Highest priority = 1, Lowest priority = 4					
a. -COOH		priority			$\begin{gathered} \text { priority } \\ 4 \end{gathered}$
	$\mathrm{C}=\text { second lowest }$ atomic number	3	b. -H	$\begin{aligned} & \mathrm{H}=\text { lowest } \\ & \text { atomic number } \end{aligned}$	
-H	$\mathrm{H}=$ lowest atomic number	4	$-\mathrm{CH}_{3}$	C bonded to 3 H 's	3
$-\mathrm{NH}_{2}$	$\mathrm{N}=$ second highest atomic number	2	-CI	$\begin{gathered} \mathrm{CI}=\begin{array}{l} \text { highest } \\ \text { atomic number } \end{array} \end{gathered}$	1
-OH	$\mathrm{O}=$ highest atomic number		$-\mathrm{CH}_{2} \mathrm{Cl}$	C bonded to $2 \mathrm{H} \mathrm{s}+1 \mathrm{Cl}$	2
decreas	riority: $-\mathrm{OH},-\mathrm{NH}_{2},-\mathrm{COO}$, -H	decrea	priority: $-\mathrm{Cl},-\mathrm{CH}_{2} \mathrm{Cl}$,	, --

c. $-\mathrm{CH}_{2} \mathrm{CH}_{3}$	C bonded to 2 H 's +1 C	$\begin{gathered} \text { priority } \\ 2 \end{gathered}$	d. $-\mathrm{CH}=\mathrm{CH}_{2}$	C bonded to $1 \mathrm{H}+2 \mathrm{C}$'s	$\begin{gathered} \text { priority } \\ 2 \end{gathered}$
$-\mathrm{CH}_{3}$	C bonded to 3 H 's	3	$-\mathrm{CH}_{3}$	C bonded to 3 H 's	3
-H	$\begin{aligned} & \mathrm{H}=\text { lowest } \\ & \text { atomic number } \end{aligned}$	4	$-\mathrm{C} \equiv \mathrm{CH}$	C bonded to 3 C 's	1
$-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	C bonded to $1 \mathrm{H}+2 \mathrm{C}$'s	1	-H	$\begin{aligned} & \mathrm{H}=\begin{array}{l} \text { lowest } \\ \text { atomic number } \end{array} \end{aligned}$	
decreasing priority: $-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2},-\mathrm{CH}_{2} \mathrm{CH}_{3},-\mathrm{CH}_{3},-\mathrm{H}$			decreasing priority: $-\mathrm{C}=\mathrm{CH},-\mathrm{CH}=\mathrm{CH}_{2},-\mathrm{CH}_{3},-\mathrm{H}$		

5.13 To assign R or S to the molecule, first rank the groups. The lowest priority group must be oriented behind the page. If tracing a circle from (1) $\rightarrow(2) \rightarrow(3)$ proceeds in the clockwise direction, then the stereogenic center is labeled R; if the circle is counterclockwise, then it is labeled S.
a.
 counterclockwise S isomer

counterclockwise
S isomer
c.

lowest priority group now back

counterclockwise
S isomer
5.14

$5.15 \mathrm{a}, \mathrm{b}$. Re-draw lisinopril as a skeletal structure, locate the stereogenic centers, and assign R, S.

5.16 The maximum number of stereoisomers $=2^{n}$ where $n=$ the number of stereogenic centers.
a. 3 stereogenic centers
b. 8 stereogenic centers $2^{8}=256$ stereoisomers

Chapter 5-10
5.17

2 stereogenic centers $=4$ possible stereoisomers

5.18

A

identical

\mathbf{C} is a meso compound.
A and B are enantiomers.
Pairs of diastereomers: A and C, B and C.

Pairs of enantiomers: \mathbf{A} and \mathbf{B}, \mathbf{C} and \mathbf{D}. Pairs of diastereomers: \mathbf{A} and \mathbf{C}, \mathbf{A} and \mathbf{D}, B and C, B and D.
5.19 A meso compound must have at least two stereogenic centers. Usually a meso compound has a plane of symmetry. You may have to rotate around a $\mathrm{C}-\mathrm{C}$ bond to see the plane of symmetry clearly.
a.

2 stereogenic centers plane of symmetry meso compound
b.

2 stereogenic centers no plane of symmetry not a meso compound
c.
 2 stereogenic centers plane of symmetry meso compound
5.20 Use the definition in Answer 5.19 to draw the meso compounds.
a. $\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{Cl}) \mathrm{CH}(\mathrm{Cl}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$

b.

plane of symmetry
c.

5.21 The enantiomer must have the exact opposite R, S designations. Diastereomers with two stereogenic centers have one center the same and one different.

```
If a compound is R,S:
Its enantiomer is: S,R « Exact opposite: R and S interchanged.
Its diastereomers are: R,R and S,S < One designation remains the same, the other changes.
```

5.22 The enantiomer must have the exact opposite R, S designations. For diastereomers, at least one of the R, S designations is the same, but not all of them.
a. $(2 R, 3 S)-2,3$-hexanediol and $(2 R, 3 R)$-2,3-hexanediol

One changes; one remains the same:
diastereomers
b. $(2 R, 3 R)-2,3$-hexanediol and ($2 S, 3 S$)-2,3-hexanediol

Both R 's change to $S^{\prime} \mathrm{s}$:
enantiomers
c. $(2 R, 3 S, 4 R)-2,3,4$-hexanetriol and $(2 S, 3 R, 4 R)-2,3,4$-hexanetriol

Two change; one remains the same:
diastereomers
5.23 The enantiomer must have the exact opposite R, S designations. For diastereomers, at least one of the R, S designations is the same, but not all of them.
a.

b.

One changes; three remain the same.
diastereomer
c.

All stereogenic centers change. enantiomers

Chapter 5-12
5.24 Meso compounds generally have a plane of symmetry. They cannot have just one stereogenic center.
a.

no plane of symmetry not a meso compound

plane of symmetry meso compound
c.

no plane of symmetry not a meso compound

5.25

a.

Draw the cis and trans isomers:

trans

B

C

Pair of enantiomers: B and C.
Pairs of diastereomers: A and B, A and C.

Only 3 stereoisomers exist.

b.

2 stereogenic centers = 4 stereoisomers maximum

Draw the cis and trans isomers:

A

B

D

Pairs of enantiomers: A and B, C and D. Pairs of diastereomers: A and C, A and D, B and C, B and D.

Draw the cis and trans isomers:

Pair of diastereomers: A and B.
Only 2 stereoisomers exist.

5.26 Four facts:

- Enantiomers are mirror image isomers.
- Diastereomers are stereoisomers that are not mirror images.
- Constitutional isomers have the same molecular formula but the atoms are bonded to different atoms.
- Cis and trans isomers are always diastereomers.
a.

b.
 and

same molecular formula, opposite configuration at one stereogenic center enantiomers
c.
 and

1,4- isomer
1,3-isomer constitutional isomers
d.
 and

Both 1,3 isomers, cis and trans: diastereomers
5.27

(S)-alanine
$[\alpha]=+8.5$
$\mathrm{mp}=297^{\circ} \mathrm{C}$
a. $\mathrm{Mp}=$ same as the S isomer.
b. The mp of a racemic mixture is often different from the melting point of the enantiomers.
c. -8.5 , same as S but opposite sign
d. Zero. A racemic mixture is optically inactive.
e. Solution of pure (S)-alanine: optically active

Equal mixture of (R) - and (S)-alanine: optically inactive $75 \%(S)$ - and $25 \%(R)$-alanine: optically active
5.28

$$
[\alpha]=\frac{\alpha}{l \times c}
$$

$$
\begin{aligned}
& \alpha=\text { observed rotation } \\
& l=\text { length of tube }(\mathrm{dm}) \\
& c=\text { concentration }(\mathrm{g} / \mathrm{mL})
\end{aligned}
$$

$$
[\alpha]=\frac{10^{\circ}}{1 \mathrm{dm} \times(1 \mathrm{~g} / 10 \mathrm{~mL})}=+100=\text { specific rotation }
$$

5.29 Enantiomeric excess $=e e=\%$ of one enantiomer - \% of other enantiomer.

a. $95 \%-5 \%=\mathbf{9 0} \%$ ee
b. $85 \%-15 \%=70 \%$ ee

5.30

a. 90% ee means 90% excess of \mathbf{A} and 10% racemic mixture of \mathbf{A} and \mathbf{B} (5% each); therefore, 95\% A and 5\% B.
b. 99% ee means 99% excess of \mathbf{A} and 1% racemic mixture of \mathbf{A} and $\mathbf{B}(0.5 \%$ each $)$; therefore, $\mathbf{9 9 . 5 \%} \mathrm{A}$ and $\mathbf{0 . 5 \%}$ B.
c. 60% ee means 60% excess of \mathbf{A} and 40% racemic mixture of \mathbf{A} and $\mathbf{B}(20 \%$ each $)$; therefore, $\mathbf{8 0 \%}$ A and $\mathbf{2 0 \%}$ B.

Chapter 5-14
5.31

$$
e e=\frac{[\alpha] \text { mixture }}{[\alpha] \text { pure enantiomer }} \times 100 \%
$$

a. $\frac{+10}{+24} \times 100 \%=42 \%$ ee
b. $\frac{[\alpha] \text { solution }}{+24} \times 100 \%=80 \%$ ee
$[\alpha]$ solution $=+19.2$
5.32
a. $\frac{[\alpha] \text { mixture }}{+3.8} \times 100 \%=60 \%$ ee
$[\alpha]$ mixture $=+2.3$
b. \% one enantiomer - \% other enantiomer $=e e$ $80 \%-20 \%=60 \%$ ee
80\% dextrorotatory (+) enantiomer 20% levorotatory (-) enantiomer
5.33 - Enantiomers have the same physical properties (mp, bp, solubility), and rotate the plane of polarized light to an equal extent, but in opposite directions.

- Diastereomers have different physical properties.
- A racemic mixture is optically inactive.

a. The bp's of \mathbf{A} and \mathbf{B} are the same. The bp's of \mathbf{A} and \mathbf{C} are different.
b. Pure A: optically active

Pure B: optically active
Pure C: optically inactive
Equal mixture of \mathbf{A} and \mathbf{B} : optically inactive
Equal mixture of \mathbf{A} and \mathbf{C} : optically active
c. There would be two fractions: one containing \mathbf{A} and \mathbf{B} (optically inactive), and one containing \mathbf{C} (optically inactive).
5.34
a, b.

three stereogenic centers

5.35

A
identical

B

C

D
5.36 Use the definitions from Answer 5.2.
a.
 and

same molecular formula $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ different connectivity constitutional isomers
c.
 one up, one down trans

Both compounds are 1,2-dimethylcyclohexane. one cis, one trans = stereoisomers
b.

$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$ $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}$ different molecular formulas not isomers
d.
 and

same molecular formula $\mathrm{C}_{7} \mathrm{H}_{14}$ different connectivity constitutional isomers
5.37 Use the definitions from Answer 5.3.
a.

c.

e.

b.

d.

Chapter 5-16
5.38

R isomer
a.

b.

S enantiomer
5.39 A plane of symmetry cuts the molecule into two identical halves.
a.

b.

d.

The plane of symmetry bisects the molecule.
e.

no plane of symmetry
5.40 Use the directions from Answer 5.6 to locate the stereogenic centers.
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ All C's have 2 or more H's.
0 stereogenic centers
b.

c. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}(\mathrm{OH}) \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ 0 stereogenic centers
d.

e.
 bonded to 4 different groups 1 stereogenic center
f.

Each indicated C bonded to 4 different groups = 6 stereogenic centers
g.

bonded to 4 different groups
1 stereogenic center
h.

All C's have 2 or more H's or are $s p^{2}$ hybridized.
0 stereogenic centers
i.

Each indicated C bonded to 4 different groups =
2 stereogenic centers
j.

Each indicated C bonded to 4 different groups = 5 stereogenic centers
5.41 Stereogenic centers are circled.

Eight constitutional isomers:

5.42
a.
 amphetamine

b.

ketoprofen

5.43 Draw a molecule to fit each description.
a.

alcohol
b.

c.

cyclic ether
5.44 Assign priority based on the rules in Answer 5.11.
a. $-\mathrm{CD}_{3},-\mathrm{CH}_{3}$

D higher mass than H higher priority
c. $-\mathrm{CH}_{2} \mathrm{Cl},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$ \uparrow
C bonded to Cl higher priority
d. $-\mathrm{CH}_{2} \mathrm{NH}_{2},-\underset{\uparrow}{-\mathrm{NHCH}_{3}}$
higher priority
b. $-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2},-\mathrm{CH}_{2} \mathrm{OH}$
$\stackrel{\uparrow}{\mathrm{C}}$ bonded to O

Chapter 5-18
5.45 Assign priority based on the rules in Answer 5.11.
a. $-\mathrm{F}>-\mathrm{OH}>-\mathrm{NH}_{2}>-\mathrm{CH}_{3}$
b. $-\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}>-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}>-\mathrm{CH}_{2} \mathrm{CH}_{3}>-\mathrm{CH}_{3}$
c. $-\mathrm{NH}_{2}>-\mathrm{CH}_{2} \mathrm{NHCH}_{3}>-\mathrm{CH}_{2} \mathrm{NH}_{2}>-\mathrm{CH}_{3}$
d. $-\mathrm{COOH}>-\mathrm{CHO}>-\mathrm{CH}_{2} \mathrm{OH}>-\mathrm{H}$
e. $-\mathrm{Cl}>-\mathrm{SH}>-\mathrm{OH}>-\mathrm{CH}_{3}$
f. $-\mathrm{C} \equiv \mathrm{CH}>-\mathrm{CH}=\mathrm{CH}_{2}>-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}>-\mathrm{CH}_{2} \mathrm{CH}_{3}$
5.46 Use the rules in Answer 5.13 to assign R or S to each stereogenic center.
a.

c.

counterclockwise
It looks like an S isomer, but we must reverse the answer, S to R.

R isomer

b.

clockwise, but H in front S isomer
d.

counterclockwise It looks like an S isomer, but we must reverse the answer, S to R.
e.

f.

g.

h.

5.47
a. (3R)-3-methylhexane

b. (4R,5S)-4,5-diethyloctane

c. $(3 R, 5 S, 6 R)$-5-ethyl-3,6-dimethylnonane

d. $(3 S, 6 S)$-6-isopropyl-3-methyldecane

5.48

a. $\overbrace{6}^{5}$
(3S)-3-methylhexane
b.

(4R,6R)-4-ethyl-6-methyldecane
c.

(3R,5S,6R)-5-isobutyl-3,6-dimethyInonane
5.49 Two enantiomers of the amino acid leucine.

5.50
a.

b.

c.

5.51
a. $1 R, 2 S$

ephedrine
d.

b. $1 \mathrm{~S}, 2 \mathrm{~S}$

pseudoephedrine
c. Ephedrine and pseudoephedrine are diastereomers (one stereogenic center is the same; one is different).
5.52
a.

b.

c.

heroin

Chapter 5-20
5.53
a. CH2
2 stereogenic centers
2 2 $=4$ possible stereoisomers
b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
0 stereogenic centers
c.

$2^{4}=16$ possible stereoisomers
5.54
a. $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{3}$

Pairs of enantiomers: \mathbf{A} and \mathbf{B}, \mathbf{C} and \mathbf{D}.
Pairs of diastereomers: A and C, A and D, B and C, B and D.
b. $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$

Pairs of diastereomers: A and C, B and C.
c. $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{Cl}) \mathrm{CH}_{2} \mathrm{CH}(\mathrm{Br}) \mathrm{CH}_{3}$

Pairs of enantiomers: A and B, C and D.
Pairs of diastereomers: A and C, A and D, B and C, B and D.
d. $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{Br}) \mathrm{CH}(\mathrm{Br}) \mathrm{CH}(\mathrm{Br}) \mathrm{CH}_{3}$

Pair of enantiomers: B and C.
Pairs of diastereomers: A and B, A and C, A and D, B and D, C and D.

5.55

a.

or

enantiomer
diastereomer
diastereomer
b.

diastereomer
c.

enantiomer

or

enantiomer
d.

5.56
a.

B
C

Pair of enantiomers: B and \mathbf{C}.
Pairs of diastereomers: A and B, A and C.
b.

Pair of diastereomers: A and B.
Meso compounds: \mathbf{A} and \mathbf{B}.
c.

A

Pairs of enantiomers: \mathbf{A} and \mathbf{B}, \mathbf{C} and \mathbf{D}.
Pairs of diastereomers: A and C, A and D, B and C, B and D.
5.57

achiral

achiral

chiral

chiral

achiral

achiral

Chapter 5-22
5.58 Explain each statement.
a. All molecules have a mirror image, but only chiral molecules have enantiomers. A is not chiral, and
therefore, does not have an enantiomer.
b.
 B has one stereogenic center, and therefore, has an enantiomer. Only compounds with two or more stereogenic centers have diastereomers.
c.

C is chiral and has two stereogenic centers, and therefore, has both an enantiomer and a diastereomer.
d.

D has two stereogenic centers, but is a meso compound. Therefore, it has a diastereomer, but no enantiomer since it is achiral. plane of symmetry

E has two stereogenic centers, but is a meso compound. Therefore, it has a diastereomer, but no enantiomer since it is achiral. plane of symmetry

5.59

a.

b.

d.

5.60 Re-draw each Newman projection and determine the R, S configuration. Then determine how the molecules are related.

A \mid re-draw

B \mid re-draw
B

a. \mathbf{A} and \mathbf{B} are identical.

C
C re-draw
D \downarrow re-draw

b. A and C are enantiomers.
c. A and \mathbf{D} are diastereomers.
d. \mathbf{C} and \mathbf{D} are diastereomers.

5.62
a.

enantiomers
b.

same molecular formula different connectivity constitutional isomers
c.

one different configuration diastereomers
d.

different molecular formulas not isomers
e.

f.

enantiomers
g.

h.

diastereomers
i.

different connectivity constitutional isomers

5.63

a. A and \mathbf{B} are constitutional isomers.
\mathbf{A} and \mathbf{C} are constitutional isomers.
\mathbf{B} and \mathbf{C} are diastereomers (cis and trans).
\mathbf{C} and \mathbf{D} are enantiomers.

Chapter 5-24
b.

A
A has two planes of symmetry. achiral

mirror images and not superimposable enantiomers
c. Alone, C and D would be optically active.
d. A and \mathbf{B} have a plane of symmetry.
e. A and \mathbf{B} have different boiling points.
\mathbf{B} and \mathbf{C} have different boiling points.
\mathbf{C} and \mathbf{D} have the same boiling point.
f. B is a meso compound.
g. An equal mixture of \mathbf{C} and \mathbf{D} is optically inactive because it is a racemic mixture.

An equal mixture of \mathbf{B} and \mathbf{C} would be optically active.
5.64

a.

$$
\frac{-50}{-165} \times 100 \%=30 \% e e
$$

$$
\frac{-83}{-165} \times 100 \%=50 \% e e
$$

$$
\frac{-120}{-165} \times 100 \%=73 \% e e
$$

c. $[\alpha]=+165$
d. $80 \%-20 \%=60 \%$ ee

$$
\text { ee }=\frac{[\alpha] \text { mixture }}{[\alpha] \text { pure enantiomer }} \times 100 \% \underbrace{}_{\substack{\text { quinine }=\mathbf{A} \\ \text { quinine's enantiomer }=\mathbf{B}}}
$$

b. 30% ee $=30 \%$ excess one compound (A)
remaining $70 \%=$ mixture of 2 compounds (35% each \mathbf{A} and \mathbf{B})
Amount of $A=30+35=65 \%$
Amount of $B=35 \%$
50% ee $=50 \%$ excess one compound (A)
remaining $50 \%=$ mixture of 2 compounds (25% each \mathbf{A} and \mathbf{B})
Amount of $\mathbf{A}=50+25=75 \%$
Amount of $B=\mathbf{2 5 \%}$
73% ee $=73 \%$ excess of one compound (A)
remaining $27 \%=$ mixture of 2 compounds (13.5% each \mathbf{A} and \mathbf{B})
Amount of $\mathbf{A}=73+13.5=86.5 \%$
Amount of $B=13.5 \%$
e. $60 \%=\frac{[\alpha] \text { mixture }}{-165} \times 100 \%$
$[\alpha]$ mixture $=-99$

5.65

c. $60 \%-40 \%=20 \%$ ee $20 \%=[\alpha]$ mixture/ $-154 \times 100 \%$ $[\alpha]$ mixture $=-31$
d. $e e=\frac{+50}{+154} \times 100 \%=32 \%$ ee
$[\alpha]$ for (S)-mandelic acid $=+154$

a. The 11 stereogenic centers are circled. Maximum number of stereoisomers $=2^{11}=2048$
b. Enantiomers of mandelic acid:

s

Chapter 5-26
5.67
a. Each stereogenic center is circled.

c. diastereomer

d. constitutional isomer

aldehyde

,
b. enantiomer

5.68 Allenes contain an $s p$ hybridized carbon atom doubly bonded to two other carbons. This makes the double bonds of an allene perpendicular to each other. When each end of the allene has two like substituents, the allene contains two planes of symmetry and it is achiral. When each end of the allene has two different groups, the allene has no plane of symmetry and it becomes chiral.

These two substituents are at 90° to these two substituents.
Allene A contains two planes of symmetry,
making it achiral.

The substituents on each end of the allene in mycomycin are different. Therefore, mycomycin is chiral.

5.70

a. The 13 tetrahedral stereogenic centers are circled.
b. Because there is restricted rotation around a $\mathrm{C}-\mathrm{C}$ double bond, groups on the end of the double bond cannot interconvert. Whenever the substituents on each end of the double bond are different from each other, the double bond is a stereogenic site. Thus, the following two double bonds are isomers:

These compounds are isomers.

There are three stereogenic double bonds in discodermolide, labeled with arrows.
c. The maximum number of stereoisomers for discodermolide must include the 13 tetrahedral stereogenic centers and the three double bonds. Maximum number of stereoisomers $=2^{16}=65,536$.
5.71 When the spiro compound has a plane of symmetry, it is achiral.
a.

achiral
b.

chiral
c.

d.

Chapter 5-28
5.72

These salts are diastereomers, and they are now separable by physical methods since they have different physical properties.

Chapter 6 Understanding Organic Reactions

Chapter Review

Writing organic reactions (6.1)

- Use curved arrows to show the movement of electrons. Full-headed arrows are used for electron pairs and half-headed arrows are used for single electrons.

- Reagents can be drawn either on the left side of an equation or over an arrow. Catalysts are drawn over or under an arrow.

Types of reactions (6.2)

Important trends

Values compared
Bond dissociation energy and bond strength

Trend
The higher the bond dissociation energy, the stronger the bond (6.4). Increasing size of the halogen

$\mathrm{CH}_{3}-\mathrm{F}$	$\mathrm{CH}_{3}-\mathrm{Cl}$	$\mathrm{CH}_{3}-\mathrm{Br}$	$\mathrm{CH}_{3}-\mathrm{I}$	
$\Delta H^{\circ}=456 \mathrm{~kJ} / \mathrm{mol}$	$351 \mathrm{~kJ} / \mathrm{mol}$	$293 \mathrm{~kJ} / \mathrm{mol}$	$234 \mathrm{~kJ} / \mathrm{mol}$	
\longleftrightarrow				
Increasing bond strength				

Chapter 6-2

$\boldsymbol{E}_{\mathrm{a}}$ and reaction rate	The larger the energy of activation, the slower the reaction (6.9A).
$\boldsymbol{E}_{\mathrm{a}}$ and rate constant	The higher the energy of activation, the smaller the rate constant (6.9B).

Equilibrium always favors the species lower in energy.

Reactive intermediates (6.3)

- Breaking bonds generates reactive intermediates.
- Homolysis generates radicals with unpaired electrons.
- Heterolysis generates ions.

Reactive intermediate	General structure	Reactive feature	Reactivity
radical	$-\mathrm{c} .$	unpaired electron	electrophilic
carbocation	$-\mathrm{C}+$	positive charge; only six electrons around C	electrophilic
carbanion	$-\mathrm{C}:-$	net negative charge; lone electron pair on C	nucleophilic

Conditions favoring product formation $(6.5,6.6)$

Variable	Value	Meaning
$\boldsymbol{K}_{\mathrm{eq}}$	$\boldsymbol{K}_{\mathrm{eq}}>\boldsymbol{1}$	More product than starting material is present at equilibrium.
$\boldsymbol{\Delta} \boldsymbol{G}^{\mathbf{0}}$	$\boldsymbol{\Delta} \boldsymbol{G}^{\mathbf{0}}<\mathbf{0}$	The energy of the products is lower than the energy of the reactants.
$\boldsymbol{\Delta} \boldsymbol{H}^{\mathbf{0}}$	$\boldsymbol{\Delta} \boldsymbol{H}^{\mathbf{0}}<\mathbf{0}$	Bonds in the products are stronger than bonds in the reactants.
$\boldsymbol{\Delta \boldsymbol { S } ^ { \mathbf { 0 } }}$	$\boldsymbol{\Delta \boldsymbol { S } ^ { \mathbf { 0 } } > \mathbf { 0 }}$	The product is more disordered than the reactant.

Equations (6.5, 6.6)

$R=8.314 \mathrm{~J} /(\mathrm{K} \cdot \mathrm{mol})$, the gas constant
$T=$ Kelvin temperature (K)

Factors affecting reaction rate (6.9)

Factor	Effect
energy of activation	higher $E_{\mathrm{a}} \rightarrow$ slower reaction
concentration	higher concentration \rightarrow faster reaction
temperature	higher temperature \rightarrow faster reaction

Chapter 6-4

Practice Test on Chapter Review

1. Label each statement as TRUE (T) or FALSE (F) for a reaction with $K_{\mathrm{eq}}=0.5$ and $E_{\mathrm{a}}=18 \mathrm{~kJ} / \mathrm{mol}$. Ignore entropy considerations.
a. The reaction is faster than a reaction with $K_{\mathrm{eq}}=8$ and $E_{\mathrm{a}}=18 \mathrm{~kJ} / \mathrm{mol}$.
b. The reaction is faster than a reaction with $K_{\text {eq }}=0.5$ and $E_{\mathrm{a}}=12 \mathrm{~kJ} / \mathrm{mol}$.
c. ΔG° for the reaction is a positive value.
d. The starting materials are lower in energy than the products of the reaction.
e. The reaction is exothermic.
2. a. Which of the following statements is true about an endothermic reaction, ignoring entropy considerations?
3. The bonds in the products are stronger than the bonds in the starting materials.
4. $K_{\mathrm{eq}}<1$.
5. A catalyst speeds up the rate of the reaction and gives a larger amount of product.
6. Statements (1) and (2) are both true.
7. Statements (1), (2), and (3) are all true.
b. Which of the following statements is true about a reaction with $K_{\mathrm{eq}}=10^{3}$ and $E_{\mathrm{a}}=2.5 \mathrm{~kJ} / \mathrm{mol}$? Ignore entropy considerations.
8. The reaction is faster than a reaction with $E_{\mathrm{a}}=4 \mathrm{~kJ} / \mathrm{mol}$.
9. The starting materials are higher in energy than the products of the reaction.
10. ΔG° is positive.
11. Statements (1) and (2) are both true.
12. Statements (1), (2), and (3) are all true.
13. a. Draw the transition state for the following reaction.

b. Draw the transition state for the following one-step elimination reaction.

Answers to Practice Test

1. a. F
b. F
c. T
d. T
e. F
2. a. 2
b. 4
3. a.

b.

Answers to Problems

6.1 [1] In a substitution reaction, one group replaces another.
[2] In an elimination reaction, elements of the starting material are lost and a π bond is formed.
[3] In an addition reaction, elements are added to the starting material.
a.

Br replaces $\mathrm{OH}=$ substitution reaction
c.

b.

d.

 ($\mathrm{H}+\mathrm{OH}$)
elimination reaction
6.2 Heterolysis means one atom gets both of the electrons when a bond is broken. A carbocation is a C with a positive charge, and a carbanion is a C with a negative charge.
a.

Electrons go to the more electronegative atom, O .

b.

Electrons go to the more electronegative atom, Br .

carbocation
c. $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{Li}$
Electrons go to the more electronegative atom, C.

$$
\mathrm{CH}_{3} \overline{\ddot{\mathrm{C}}} \mathrm{H}_{2} \quad \mathrm{Li}^{+}
$$

carbanion

Chapter 6-6
6.3 Use full-headed arrows to show the movement of electron pairs, and half-headed arrows to show the movement of single electrons.
a.
 \longrightarrow $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}+: \mathrm{N} \equiv \mathrm{N}$
c.

b.

\qquad $\mathrm{CH}_{3}-\mathrm{CH}_{3}$
d. $\mathrm{H} \ddot{̣}-\mathrm{O} \mathrm{O} \mathrm{H} \longrightarrow 2$ н \longrightarrow
6.4 Increasing number of electrons between atoms $=$ increasing bond strength $=$ increasing bond dissociation energy $=$ decreasing bond length. Increasing size of an atom = increasing bond length $=$ decreasing bond strength.
a. ${ }^{\mathrm{H}_{-}-\mathrm{Cl}} \quad \begin{aligned} & \text { or } \mathrm{H}_{-1} \mathrm{Br} \\ & \\ & \mathrm{Br} \text { is larger than } \mathrm{Cl} .\end{aligned}$ longer,
higher bond weaker bond dissociation energy
b. $\mathrm{CH}_{3}-\mathrm{OH} \quad$ or $\mathrm{CH}_{3}-\mathrm{SH}$ higher bond weaker bond dissociation energy
c. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{O}$ or
 fewer electrons dissociation energy

6.5 To determine ΔH^{0} for a reaction:

[1] Add the bond dissociation energies for all bonds broken in the equation (+ values).
[2] Add the bond dissociation energies for all of the bonds formed in the equation (- values).
[3] Add the energies together to get the ΔH^{0} for the reaction.
A positive $\Delta \boldsymbol{H}^{\mathbf{0}}$ means the reaction is endothermic. A negative $\boldsymbol{\Delta} \boldsymbol{H}^{\mathbf{0}}$ means the reaction is exothermic.
a. $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{Br}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{OH}+\mathrm{HBr}$
[1] Bonds broken

	$\Delta H^{\circ}(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{Br}$	+285
$\mathrm{H}-\mathrm{OH}$	+498
Total	$+783 \mathrm{~kJ} / \mathrm{mol}$

[2] Bonds formed

	$\Delta H^{\circ}(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{OH}$	-393
$\mathrm{H}-\mathrm{Br}$	-368
Total	$-761 \mathrm{~kJ} / \mathrm{mol}$

[3] Overall $\Delta H^{\circ}=$

sum in Step [1]
+
sum in Step [2]
$+783 \mathrm{~kJ} / \mathrm{mol}$
$-761 \mathrm{~kJ} / \mathrm{mol}$
ANSWER: + $22 \mathrm{~kJ} / \mathrm{mol}$ endothermic
b. $\mathrm{CH}_{4}+\mathrm{Cl}_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{HCl}$
[1] Bonds broken

	$\Delta H^{\circ}(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{CH}_{3}-\mathrm{H}$	+435
$\mathrm{Cl}-\mathrm{Cl}$	+242
Total	$+677 \mathrm{~kJ} / \mathrm{mol}$

[2] Bonds formed

	$\Delta H^{\circ}(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{CH}_{3}-\mathrm{Cl}$	-351
$\mathrm{H}-\mathrm{Cl}$	-431
Total	$-782 \mathrm{~kJ} / \mathrm{mol}$

[3] Overall $\Delta H^{\circ}=$

sum in Step [1] + sum in Step [2]
$+677 \mathrm{~kJ} / \mathrm{mol}$
$-782 \mathrm{~kJ} / \mathrm{mol}$
$-105 \mathrm{~kJ} / \mathrm{mol}$ exothermic

6.6 Use the directions from Answer 6.5. In determining the number of bonds broken or formed, you must take into account the coefficients needed to balance an equation.
a. $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

6.7 Use the following relationships to answer the questions:

$$
\text { If } K_{\mathrm{eq}}=1 \text {, then } \Delta G^{\circ}=0 \text {; if } K_{\mathrm{eq}}>1 \text {, then } \Delta G^{\circ}<0 \text {; if } K_{\mathrm{eq}}<1 \text {, then } \Delta G^{\circ}>0
$$

a. A negative value of ΔG° means the equilibrium favors the product and K_{eq} is >1. Therefore, $K_{\text {eq }}=1000$ is the answer.
b. A lower value of ΔG° means a larger value of $K_{\text {eq }}$, and the products are more favored. $K_{\text {eq }}=10^{-2}$ is larger than $K_{\text {eq }}=10^{-5}$, so ΔG° is lower.

Chapter 6-8
6.8 Use the relationships from Answer 6.7.
a. $K_{\mathrm{eq}}=5.5 . K_{\mathrm{eq}}>1$ means that the equilibrium favors the product.
b. $\Delta G^{\circ}=40 \mathrm{~kJ} / \mathrm{mol}$. A positive ΔG° means the equilibrium favors the starting material.
6.9 When the product is lower in energy than the starting material, the equilibrium favors the product. When the starting material is lower in energy than the product, the equilibrium favors the starting material.
a. $\Delta \boldsymbol{G}^{\circ}$ is positive, so the equilibrium favors the starting material. Therefore the starting material is lower in energy than the product.
b. $\boldsymbol{K}_{\mathrm{eq}}$ is $>\mathbf{1}$, so the equilibrium favors the product. Therefore the product is lower in energy than the starting material.
c. $\Delta \boldsymbol{G}^{\circ}$ is negative, so the equilibrium favors the product. Therefore the product is lower in energy than the starting material.
d. $\boldsymbol{K}_{\mathrm{eq}} \mathrm{i} \mathbf{< 1} \mathbf{1}$, so the equilibrium favors the starting material. Therefore the starting material is lower in energy than the product.
6.10

a. The $K_{\text {eq }}$ is >1, so the product (the conformation on the right) is favored at equilibrium.
b. The ΔG° for this process must be negative, because the product is favored.
c. ΔG° is somewhere between 0 and $-6 \mathrm{~kJ} / \mathrm{mol}$.
6.11 A positive ΔH° favors the starting material. A negative ΔH° favors the product.
a. ΔH° is positive $(80 \mathrm{~kJ} / \mathrm{mol})$. The starting material is favored.
b. ΔH° is negative $(-40 \mathrm{~kJ} / \mathrm{mol})$. The product is favored.

6.12

a. False. The reaction is endothermic.
b. True. This assumes that ΔG° is approximately equal to ΔH°.
c. False. $K_{\text {eq }}<1$.
d. True.
e. False. The starting material is favored at equilibrium.

6.13

a. True.
b. False. ΔG° for the reaction is negative.
c. True.
d. False. The bonds in the product are stronger than the bonds in the starting material.
e. True.

6.14

Reaction coordinate
6.15 A transition state is drawn with dashed lines to indicate the partially broken and partially formed bonds. Any atom that gains or loses a charge contains a partial charge in the transition state.
a.

b. $\mathrm{CH}_{3} \mathrm{O}-\mathrm{H}+{ }^{-} \mathrm{OH} \longrightarrow \mathrm{CH}_{3} \mathrm{O}^{-}+\mathrm{H}_{2} \mathrm{O}$
 transition state: $\left[\mathrm{CH}_{3} \stackrel{\delta^{-}}{----\mathrm{H}^{-}--\stackrel{\delta^{-}}{-} \mathrm{H}}\right]^{\ddagger}$

a. Reaction $\mathbf{A}-\mathbf{C}$ is exothermic.

Reaction $\mathbf{A}-\mathbf{B}$ is endothermic.
b. Reaction $\mathbf{A}-\mathbf{C}$ is faster.
c. Reaction $\mathbf{A}-\mathbf{C}$ generates a lowerenergy product.
d. See labels.
e. See labels.
f. See labels.
6.17

Reaction coordinate
a. Two steps, because there are two energy barriers.
b. See labels.
c. See labels.
d. One reactive intermediate is formed (see label).
e. The first step is rate-determining, because its transition state is at higher energy.
f. The overall reaction is endothermic, because the energy of the products is higher than the energy of the reactants.

Chapter 6-10
6.18

relative energies: $\mathrm{C}<\mathrm{A}<\mathrm{B}$ $B \rightarrow C$ is rate-determining.

Reaction coordinate
6.19 $\boldsymbol{E}_{\mathrm{a}}$, concentration, and temperature affect reaction rate. $\Delta H^{\circ}, \Delta G^{\circ}$, and K_{eq} do not affect reaction rate.
a. $\boldsymbol{E}_{\mathbf{a}}=\mathbf{4} \mathbf{k J} / \mathbf{m o l}$ corresponds to a faster reaction rate.
b. A temperature of $25^{\circ} \mathrm{C}$ will have a faster reaction rate, because a higher temperature corresponds to a faster reaction.
c. No change: $K_{\text {eq }}$ does not affect reaction rate.
d. No change: ΔH° does not affect reaction rate.
6.20
a. False. The reaction occurs at the same rate as a reaction with $K_{\text {eq }}=8$ and $E_{\mathrm{a}}=80 \mathrm{~kJ} / \mathrm{mol}$.
b. False. The reaction is slower than a reaction with $K_{\text {eq }}=0.8$ and $E_{\mathrm{a}}=40 \mathrm{~kJ} / \mathrm{mol}$.
c. True.
d. True.
e. False. The reaction is endothermic.
6.21 All reactants in the rate equation determine the rate of the reaction.
[1] rate $=k\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}\right]\left[{ }^{-} \mathrm{OH}\right]$
a. Tripling the concentration of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$ only \rightarrow The rate is tripled.
b. Tripling the concentration of ${ }^{-} \mathrm{OH}$ only \rightarrow The rate is tripled.
c. Tripling the concentration of both $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$ and ${ }^{-} \mathrm{OH} \rightarrow$ The rate increases by a factor of $9(3 \times 3=9)$.
[2] rate $=k\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}\right]$
a. Doubling the concentration of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH} \rightarrow$ The rate is doubled.
b. Increasing the concentration of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$ by a factor of $10 \rightarrow$ The rate increases by a factor of 10 .
6.22 The rate equation is determined by the rate-determining step.

b. $\quad\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{Br} \xrightarrow[\text { slow }]{ } \begin{gathered}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+} \\ +\mathrm{Br}^{-}\end{gathered} \xrightarrow[\text { fast }]{-\mathrm{OH}}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O} \quad$ The slow step determines the rate equation.
6.23 A catalyst is not used up or changed in the reaction. It only speeds up the reaction rate.
OH and H are added to
the starting material.

$$
\mathrm{I}^{-} \text {not used up = catalyst. }
$$

a.

b.
$\xrightarrow[\substack{-\mathrm{OH} \\-\mathrm{OH} \text { substitutes for } \mathrm{Cl}^{-}}]{\mathrm{CH}_{3} \mathrm{Cl}} \mathrm{CH}_{3} \mathrm{OH}$
c.

H_{2} adds to the starting material.
6.24
a.

b.

6.25

6.26 Use the directions from Answer 6.1.
a.

elements lost ($\mathrm{H}+\mathrm{OH}$)
π bond formed elimination reaction

b.

Cl replaces $\mathrm{H}=$
 substitution reaction
c.

addition of 2 H 's addition reaction

This bond is formed from two $s p^{3}$ hybridized C's.

This bond is formed from one $s p^{2}$ and one $s p^{3}$ hybridized C . The higher percent s character in one C makes a stronger bond; thus, the bond dissociation energy is higher.
d.

substitution reaction

Chapter 6-12
6.27 Use the rules in Answer 6.3 to draw the arrows.
a.

d.

b.

e.

c.

f.

6.28

c.

b.

d.

6.29 Draw the curved arrows to identify the product \mathbf{X}.

6.30 Follow the curved arrows to identify the intermediate \mathbf{Y}.

6.31 Use the rules from Answer 6.4.

6.32 Use the directions from Answer 6.5.
a. $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{H}+\mathrm{Br}_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{Br}+\mathrm{HBr}$
[1] Bonds broken
[2] Bonds formed

	$\Delta H^{\circ}(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{H}$	+410
$\mathrm{Br}-\mathrm{Br}$	+192
Total	$+602 \mathrm{~kJ} / \mathrm{mol}$

	$\Delta H^{\circ}(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{Br}$	-285
$\mathrm{H}-\mathrm{Br}$	-368
Total	$-653 \mathrm{~kJ} / \mathrm{mol}$

[3] Overall $\Delta H^{\circ}=$

b. $\cdot \mathrm{OH}+\mathrm{CH}_{4} \longrightarrow \cdot \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}$
[1] Bonds broken

	$\Delta H^{\circ}(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{CH}_{3}-\mathrm{H}$	$+435 \mathrm{~kJ} / \mathrm{mol}$

[2] Bonds formed

$\mathrm{H}-\mathrm{OH} \quad-498 \mathrm{~kJ} / \mathrm{mol}$

[3] Overall $\Delta H^{\circ}=$
$\left.\begin{array}{r}+435 \mathrm{~kJ} / \mathrm{mol} \\ \text { ANSWER: }-498 \mathrm{~kJ} / \mathrm{mol}\end{array}\right]$
c. $\mathrm{CH}_{3}-\mathrm{OH}+\mathrm{HBr} \longrightarrow$

[1] Bonds broken
$\qquad \begin{aligned} \Delta H^{\circ}(\mathrm{kJ} / \mathrm{mol})\end{aligned}$
$\mathrm{CH}_{3}-\mathrm{OH}$
$\mathrm{H}-\mathrm{Br}$
Total
389

d. $\cdot \mathrm{Br}+\mathrm{CH}_{4} \longrightarrow \cdot \mathrm{H}+\mathrm{CH}_{3} \mathrm{Br}$
[1] Bonds broken

	$\Delta H^{\circ}(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{CH}_{3}-\mathrm{H}$	$+435 \mathrm{~kJ} / \mathrm{mol}$

[2] Bonds formed

	$\Delta H^{\circ}(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{CH}_{3}-\mathrm{Br}$	$-293 \mathrm{~kJ} / \mathrm{mol}$

[3] Overall $\Delta H^{\circ}=$
$+435 \mathrm{~kJ} / \mathrm{mol}$
$-293 \mathrm{~kJ} / \mathrm{mol}$
ANSWER: $+142 \mathrm{~kJ} / \mathrm{mol}$
6.33

hybrid:

Chapter 6-14
6.34 The more stable radical is formed by a reaction with a smaller ΔH°.

Because the bond dissociation for cleavage of the $\mathrm{C}-\mathrm{H}$ bond to form radical \mathbf{A} is higher, more energy must be added to form it. This makes \mathbf{A} higher in energy and therefore less stable than \mathbf{B}.
6.35 Use the rules from Answer 6.9.
a. $K_{\mathrm{eq}}=0.5 . K_{\mathrm{eq}}$ is less than one, so the starting material is favored.
b. $\Delta G^{0}=-100 \mathrm{~kJ} / \mathrm{mol} . \Delta G^{\mathrm{o}}$ is less than 0 , so the product is favored.
c. $\Delta H^{0}=8.0 \mathrm{~kJ} / \mathrm{mol} . \Delta H^{\circ}$ is positive, so the starting material is favored.
d. $K_{\mathrm{eq}}=16 . K_{\text {eq }}$ is greater than one, so the product is favored.
e. $\Delta G^{0}=2.0 \mathrm{~kJ} / \mathrm{mol} . \Delta G^{\circ}$ is greater than zero, so the starting material is favored.
f. $\Delta H^{0}=200 \mathrm{~kJ} / \mathrm{mol} . \Delta H^{\circ}$ is positive, so the starting material is favored.
g. $\Delta S^{\circ}=8 \mathrm{~J} /(\mathrm{K} \cdot \mathrm{mol}) . \Delta S^{\circ}$ is greater than zero, so the product is more disordered and favored.
h. $\Delta S^{\circ}=-8 \mathrm{~J} /(\mathrm{K} \cdot \mathrm{mol}) . \Delta S^{\circ}$ is less than zero, so the starting material is more disordered and favored.
6.36
a. A negative ΔG° must have $K_{\mathrm{eq}}>1$. $K_{\mathrm{eq}}=10^{2}$.
b. $K_{\mathrm{eq}}=[$ products $] /[$ reactants $]=[1] /[5]=0.2=K_{\mathrm{eq}} . \Delta G^{\circ}$ is positive.
c. A negative ΔG° has $K_{\mathrm{eq}}>1$, and a positive ΔG° has $K_{\mathrm{eq}}<1 . \Delta G^{\circ}=-8 \mathrm{~kJ} / \mathrm{mol}$ will have a larger $K_{\text {eq }}$.
6.37

a. The equatorial conformation is always present in the larger amount at equilibrium, because the $K_{\text {eq }}$ for all R groups is greater than 1 .
b. The cyclohexane with the $-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$ group will have the greatest amount of equatorial conformation at equilibrium, because this group has the highest $K_{\text {eq }}$.
c. The cyclohexane with the $-\mathrm{CH}_{3}$ group will have the greatest amount of axial conformation at equilibrium, because this group has the lowest $K_{\text {eq }}$.
d. The cyclohexane with the $-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$ group will have the most negative ΔG°, because it has the largest $K_{\text {eq }}$.
e. The larger the R group, the more favored the equatorial conformation.
f. The $K_{\text {eq }}$ for tert-butylcyclohexane is much higher because the tert-butyl group is bulkier than the other groups. With a tert-butyl group, a CH_{3} group is always oriented over the ring when the group is axial, creating severe 1,3-diaxial interactions. With all other substituents, the larger CH_{3} groups can be oriented away from the ring, placing a H over the ring, making the 1,3-diaxial interactions less severe. Compare:
tert-butylcyclohexane

severe 1,3-diaxial interactions with the CH_{3} group and the axial H's
isopropylcyclohexane

less severe 1,3-diaxial interactions
6.38 Calculate $K_{\text {eq }}$, and then find the percentage of axial and equatorial conformations present at equilibrium.

a. $\square G^{\circ}=-5.9 \log K_{\mathrm{eq}}$
$\square G^{\circ}=-1.0 \mathrm{~kJ} / \mathrm{mol}$
$-1.0 \mathrm{~kJ} / \mathrm{mol}=-5.9 \log K_{\mathrm{eq}}$
$K_{\mathrm{eq}}=1.5$
$K_{\mathrm{eq}}=1.5$
b. $\quad K_{\mathrm{eq}}=$ [products]/[reactants]
$1.5=$ [products]/[reactants]
1.5 [reactants] = [products]
[reactants] $=0.4=40 \%$ axial
[products] $=0.6=60 \%$ equatorial
6.39 Reactions resulting in an increase in entropy are favored. When a single molecule forms two molecules, there is an increase in entropy.
a.
 increased number of molecules ΔS° is positive. products favored
b. $\mathrm{CH}_{3} .+\mathrm{CH}_{3} . \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{3}$ decreased number of molecules
ΔS° is negative.
starting material favored
c. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH})_{2} \longrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{O}+\mathrm{H}_{2} \mathrm{O}$
increased number of molecules
ΔS° is positive.
products favored
d. $\mathrm{CH}_{3} \mathrm{COOCH}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{OH}$
no change in the number of molecules neither favored
6.40 Use the directions in Answer 6.15 to draw the transition state. Nonbonded electron pairs are drawn in at reacting sites.
a.

transition state:
 transition
state: $\left[\begin{array}{cc}\mathrm{F} \\ \mathrm{F}-\mathrm{B}--\ddot{\mathrm{C}} \mathrm{C} \\ \mathrm{F}^{-} \\ \mathrm{F} & \delta^{-}\end{array}\right]^{\ddagger}$

Chapter 6-16
c.

d.

6.41

Reaction coordinate

- one step $\mathbf{A} \rightarrow \mathbf{B}$
- exothermic since B lower than A
- low E_{a} (small energy barrier)

Reaction coordinate
- one step A \rightarrow B
- endothermic since B higher than A
- high E_{a} (large energy barrier)
Reaction coordinate H° overall
- two steps
- A lowest energy
- B highest energy

Reaction coordinate
- one step $\mathbf{A} \rightarrow \mathbf{B}$
- exothermic since
B lower than \mathbf{A}
6.42
a.

b. $\cdot \mathrm{Cl}+\mathrm{CH}_{4} \longrightarrow \cdot \mathrm{CH}_{3}+\mathrm{HCl}$
[1] Bonds broken

$\Delta H^{\circ}(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{CH}_{3}-\mathrm{H} \quad+435 \mathrm{~kJ} / \mathrm{mol}$

c.

Reaction coordinate

[2] Bonds formed

	$\Delta H^{\circ}(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{H}-\mathrm{Cl}$	$-431 \mathrm{~kJ} / \mathrm{mol}$

[3] Overall $\Delta H^{\circ}=$
$\begin{array}{r}+435 \mathrm{~kJ} / \mathrm{mol} \\ -431 \mathrm{~kJ} / \mathrm{mol} \\ \hline \text { ANSWER: }+4 \mathrm{~kJ} / \mathrm{mol}\end{array}$
d. The E_{a} for the reverse reaction is the difference in energy between the products and the transition state, $12 \mathrm{~kJ} / \mathrm{mol}$.

6.43

a. B, D, and F are transition states.
b. \mathbf{C} and E are reactive intermediates.
c. The overall reaction has three steps.
d. $\mathbf{A}-\mathbf{C}$ is endothermic.
$\mathbf{C}-\mathbf{E}$ is exothermic.
$\mathbf{E}-\mathbf{G}$ is exothermic.
e. The overall reaction is exothermic.

Reaction coordinate
6.44

Since $\mathrm{p} K_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right)=4.8$ and $\mathrm{p} K_{\mathrm{a}}\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}\right]=18$, the weaker acid is formed as product, and equilibrium favors the products. Thus, ΔH° is negative, and the products are lower in energy than the starting materials.

Reaction coordinate
6.45

a. Step [1] breaks one π bond and the $\mathrm{H}-\mathrm{Cl}$ bond, and one $\mathrm{C}-\mathrm{H}$ bond is formed. The ΔH° for this step should be positive, because more bonds are broken than formed.
b. Step [2] forms one bond. The ΔH° for this step should be negative, because one bond is formed and none is broken.
c. Step [1] is rate-determining, because it is more difficult.
d. Transition state for Step [1]:

Transition state for Step [2]:

Chapter 6-18

6.46

Reaction coordinate
a. The reaction has three steps, because there are three energy barriers.
b. See above.
c. Transition state \mathbf{A} (see graph for location): Transition state \mathbf{B} : Transition state \mathbf{C} :

d. Step [2] is rate-determining, because this step has the highest energy transition state.
6.47 E_{a}, concentration, catalysts, rate constant, and temperature affect reaction rate so (c), (d), (e), (g), and (h) affect rate.
6.48
a. rate $=\boldsymbol{k}\left[\mathrm{CH}_{3} \mathrm{Br}\right][\mathrm{NaCN}]$
b. Double $\left[\mathrm{CH}_{3} \mathrm{Br}\right]=$ rate doubles.
c. Halve $[\mathrm{NaCN}]=$ rate halved.
d. Increase both $\left[\mathrm{CH}_{3} \mathrm{Br}\right]$ and $[\mathrm{NaCN}]$ by factor of $5=[5][5]=$ rate increases by a factor of 25.
6.49

a. Only the slow step is included in the rate equation: Rate $=\boldsymbol{k}\left[\mathrm{CH}_{3} \mathrm{O}^{-}\right]\left[\mathrm{CH}_{3} \mathbf{C O C l}\right]$
b. $\mathrm{CH}_{3} \mathrm{O}^{-}$is in the rate equation. Increasing its concentration by 10 times would increase the rate by 10 times.
c. When both reactant concentrations are increased by 10 times, the rate increases by $\mathbf{1 0 0}$ times $(\mathbf{1 0} \times \mathbf{1 0}=100)$.
d. This is a substitution reaction $\left(\mathrm{OCH}_{3}\right.$ substitutes for Cl$)$.

6.50

a. True: Increasing temperature increases reaction rate.
b. True: If a reaction is fast, then it has a large rate constant.
c. False: Corrected-There is no relationship between ΔG° and reaction rate.
d. False: Corrected-When the E_{a} is large, the rate constant is small.
e. False: Corrected-There is no relationship between $K_{\text {eq }}$ and reaction rate.
f. False: Corrected-Increasing the concentration of a reactant increases the rate of a reaction only if the reactant appears in the rate equation.

6.51

a. The first mechanism has one step: Rate $=\boldsymbol{k}\left[\left(\mathbf{C H}_{3}\right)_{3} \mathbf{C I}\right][\mathbf{O H}]$
b. The second mechanism has two steps, but only the first step would be in the rate equation, because it is slow and therefore rate-determining: Rate $=\boldsymbol{k}\left[\left(\mathbf{C H}_{3}\right)_{3} \mathbf{C I}\right]$
c. Possibility [1] is second order; possibility [2] is first order.
d. These rate equations can be used to show which mechanism is plausible by changing the concentration of ${ }^{-} \mathrm{OH}$. If this affects the rate, then possibility [1] is reasonable. If it does not affect the rate, then possibility [2] is reasonable.
e.

$$
\begin{aligned}
& \mathbf{A}=\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CI}+{ }^{-} \mathrm{OH} \\
& \mathbf{B}=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}+\mathrm{I}^{-}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Reaction coordinate

Chapter 6-20
f.

[1]

Reaction coordinate
6.52 The difference in both the acidity and the bond dissociation energy of $\mathrm{CH}_{3} \mathrm{CH}_{3}$ versus $\mathrm{HC} \equiv \mathrm{CH}$ is due to the same factor: percent s-character. The difference results because one process is based on homolysis and one is based on heterolysis.
Bond dissociation energy:

Acidity: To compare acidity, we must compare the stability of the conjugate bases:

Now a higher percent s-character stabilizes the conjugate base making the starting acid more acidic.
6.53 a. Re-draw A to see more clearly how cyclization occurs.

b.

6.54
a.

b.

c. $\mathrm{C}-\mathrm{H}_{\mathrm{a}}$ is weaker than $\mathrm{C}-\mathrm{H}_{\mathrm{b}}$ since the carbon radical formed when the $\mathrm{C}-\mathrm{H}_{\mathrm{a}}$ bond is broken is highly resonance stabilized. This means the bond dissociation energy for $\mathrm{C}-\mathrm{H}_{\mathrm{a}}$ is lower.
6.55 In Reaction [1], the number of molecules of reactants and products stays the same, so entropy is not a factor. In Reaction [2], a single molecule of starting material forms two molecules of products, so entropy increases. This makes ΔG° more favorable, thus increasing $K_{\text {eq }}$.

6.56

To increase the yield of ethyl acetate, $\mathrm{H}_{2} \mathrm{O}$ can be removed from the reaction mixture, or there can be a large excess of one of the starting materials.

Chapter 6-22
6.57
a.

resonance stabilized less energy for homolysis

b.

$\mathrm{Csp}{ }^{2}-\mathrm{O}$
higher \% s-character shorter bond
$\mathrm{CH}_{3} \mathrm{CH}_{2}{ }_{4} \mathrm{O}-\mathrm{H}$
Csp ${ }^{3}-\mathrm{O}$
lower \% s-character longer bond
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{O}-\mathrm{H} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2}-\ddot{\mathrm{O}}$. ethanol no resonance stabilization
Less energy is required for cleavage of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}-\mathrm{H}$ because homolysis forms the more stable radical.

Chapter 7 Alkyl Halides and Nucleophilic Substitution

Chapter Review

General facts about alkyl halides

- Alkyl halides contain a halogen atom X bonded to an $s p^{3}$ hybridized carbon (7.1).
- Alkyl halides are named as halo alkanes, with the halogen as a substituent (7.2).
- Alkyl halides have a polar $\mathrm{C}-\mathrm{X}$ bond, so they exhibit dipole-dipole interactions but are incapable of intermolecular hydrogen bonding (7.3).
- The polar $\mathrm{C}-\mathrm{X}$ bond containing an electrophilic carbon makes alkyl halides reactive towards nucleophiles and bases (7.5).

The central theme (7.6)

- Nucleophilic substitution is one of the two main reactions of alkyl halides. A nucleophile replaces a leaving group on an $s p^{3}$ hybridized carbon.

- One σ bond is broken and one σ bond is formed.
- There are two possible mechanisms: $\mathrm{S}_{\mathrm{N}} 1$ and $\mathrm{S}_{\mathrm{N}} 2$.
$\mathrm{S}_{\mathrm{N}} 1$ and $\mathrm{S}_{\mathbf{N}} \mathbf{2}$ mechanisms compared

	$\mathrm{S}_{\mathrm{N}} 2$ mechanism	$\mathrm{S}_{\mathbf{N}} 1$ mechanism
[1] Mechanism	- One step (7.11B)	- Two steps (7.13B)
[2] Alkyl halide	- Order of reactivity: $\mathrm{CH}_{3} \mathrm{X}>\mathrm{RCH}_{2} \mathrm{X}$ $>\mathrm{R}_{2} \mathrm{CHX}>\mathrm{R}_{3} \mathrm{CX}(7.11 \mathrm{D})$	- Order of reactivity: $\mathrm{R}_{3} \mathrm{CX}>$ $\mathrm{R}_{2} \mathrm{CHX}>\mathrm{RCH}_{2} \mathrm{X}>\mathrm{CH}_{3} \mathrm{X}$ (7.13D)
[3] Rate equation	- \quad rate $=k[\mathrm{RX}]\left[: \mathrm{Nu}^{-}\right]$ - second-order kinetics (7.11A)	- \quad rate $=k[\mathrm{RX}]$ - first-order kinetics (7.13A)
[4] Stereochemistry	- backside attack of the nucleophile (7.11C) - inversion of configuration at a stereogenic center	- trigonal planar carbocation intermediate (7.13C) - racemization at a stereogenic center
[5] Nucleophile	- favored by stronger nucleophiles (7.17B)	- favored by weaker nucleophiles (7.17B)
[6] Leaving group	- better leaving group \rightarrow faster reaction (7.17C)	- better leaving group \rightarrow faster reaction (7.17C)
[7] Solvent	- favored by polar aprotic solvents (7.17D)	- favored by polar protic solvents (7.17D)

Chapter 7-2

Increasing rate of an $\mathrm{S}_{\mathrm{N}} 1$ reaction			
H	H	H	R
$\mathrm{H}-\mathrm{C}-\mathrm{Br}$	$\mathrm{R}-\mathrm{C}-\mathrm{Br}$	$\mathrm{R}-\mathrm{C}-\mathrm{Br}$	$\mathrm{R}-\mathrm{C}-\mathrm{Br}$
$\stackrel{1}{\mathrm{H}}$	H	R	R
methyl	$1{ }^{\circ}$	$2{ }^{\circ}$	3°
$S_{N} 2$		both	
		$\mathrm{S}_{\mathrm{N}} 1$ and $\mathrm{S}_{\mathrm{N}} \mathbf{2}$	$\mathrm{S}_{\mathrm{N}} 1$

Important trends

- The best leaving group is the weakest base. Leaving group ability increases left to right across a row and down a column of the periodic table (7.7).

- Nucleophilicity decreases across a row of the periodic table (7.8A).

$$
\text { For } 2^{\text {nd }} \text { row elements }
$$ with the same charge:

Increasing basicity
Increasing nucleophilicity

- Nucleophilicity decreases down a column of the periodic table in polar aprotic solvents (7.8C).

- Nucleophilicity increases down a column of the periodic table in polar protic solvents (7.8C).

- The stability of a carbocation increases as the number of R groups bonded to the positively charged carbon increases (7.14).

Important principles

Principle
 Example

- Electron-donating groups (such as R groups) stabilize a positive charge (7.14A).
- Steric hindrance decreases nucleophilicity but not basicity (7.8B).
- Hammond postulate: In an endothermic reaction, the more stable product is formed faster. In an exothermic reaction, this fact is not necessarily true (7.15).
- Planar, $s p^{2}$ hybridized atoms react with reagents from both sides of the plane (7.13C).
- $\quad 3^{\circ}$ Carbocations $\left(\mathrm{R}_{3} \mathrm{C}^{+}\right)$are more stable than 2° Carbocations $\left(\mathrm{R}_{2} \mathrm{CH}^{+}\right)$, which are more stable than 1° carbocations $\left(\mathrm{RCH}_{2}{ }^{+}\right)$.
- $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CO}^{-}$is a stronger base but a weaker nucleophile than $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{-}$.
- $\quad \mathrm{S}_{\mathrm{N}} 1$ reactions are faster when more stable (more substituted) carbocations are formed, because the rate-determining step is endothermic.
- A trigonal planar carbocation reacts with nucleophiles from both sides of the plane.

Practice Test on Chapter Review

1. Give the IUPAC name for the following compound, including the appropriate R, S prefix.

2. a. Which of the following carbocations is the most stable?
3.

2.

3.

4.

5.

b. Which of the following anions is the best leaving group?

1. CH_{3}^{-}
2. ${ }^{-} \mathrm{OH}$
3. H^{-}
4. ${ }^{-} \mathrm{NH}_{2}$
5. Cl^{-}
c. Which species is the strongest nucleophile in polar protic solvents?
6. F^{-}
7. ${ }^{-} \mathrm{OH}$
8. Cl^{-}
9. $\mathrm{H}_{2} \mathrm{O}$
10. ${ }^{-} \mathrm{SH}$
d. Which of the following statements is true about the given reaction?

Chapter 7-4

1. The reaction follows second-order kinetics.
2. The rate of the reaction increases when the solvent is changed from $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ to DMSO.
3. The rate of the reaction increases when the leaving group is changes from Br to F .
4. Statements (1) and (2) are both true.
5. Statements (1), (2), and (3) are all true.
6. Rank the following compounds in order of increasing reactivity in an $\mathbf{S}_{\mathbf{N}} \mathbf{1}$ reaction. Rank the least reactive compound as $\mathbf{1}$, the most reactive compound as 4 , and the compounds of intermediate reactivity as 2 and 3.

A

B

C

D
7. Consider the following two nucleophilic substitution reactions, labeled Reaction [1] and Reaction [2]. (Only the starting materials are drawn.) Then answer True (T) or False (F) to each of the following statements.

$$
\begin{aligned}
& \text { Reaction [1] }\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{CBr}+\mathrm{CH}_{3} \mathrm{OH} \longrightarrow \\
& \text { Reaction [2] } \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}+{ }^{-} \mathrm{OCH}_{3} \longrightarrow
\end{aligned}
$$

a. The rate equation for Reaction [1] is rate $=k\left[\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{CBr}^{2}\right]\left[\mathrm{CH}_{3} \mathrm{OH}\right]$.
b. Changing the leaving group from Br^{-}to Cl^{-}decreases the rate of both reactions.
c. Changing the solvent from $\mathrm{CH}_{3} \mathrm{OH}$ to $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}=\mathrm{O}$ increases the rate of Reaction [2].
d. Doubling the concentration of both $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$ and ${ }^{-} \mathrm{OCH}_{3}$ in Reaction [2] doubles the rate of the reaction.
e. If entropy is ignored and $K_{\text {eq }}$ for Reaction [1] is <1, then the reaction is exothermic.
f. If entropy is ignored and ΔH° is negative for Reaction [1], then the bonds in the product are stronger than the bonds in the starting materials.
g. The energy diagram for Reaction [2] exhibits only one energy barrier.
5. Draw the organic products formed in the following reactions. Use wedges and dashes to show stereochemistry in compounds with stereogenic centers.
a.

b.

c.

d.

Answers to Practice Test

1. (7S)-7-chloro-3-ethyldecane
2. $\mathbf{A}-4$

B-1
C-3
D-2
2. a. 4
b. 5
c. 5
d. 4
4. a. F
b. T
c. T
d. F
e. F
f. T
g. T
5. a.

c.
b.

d.

Answers to Problems

7.1 Classify the alkyl halide as $1^{\circ}, 2^{\circ}$, or 3° by counting the number of carbons bonded directly to the carbon bonded to the halogen.
a.

b.

C bonded to 3 C's 3° alkyl halide
d.

C bonded to $3 \mathrm{C}^{\prime} \mathrm{s}$
3° alkyl halide
7.2 Use the directions from Answer 7.1.
a, b.

telfairine

Chapter 7-6
7.3 Draw a compound of molecular formula $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{Br}$ to fit each description.
a.

1° alkyl halide one stereogenic center
b.

2° alkyl halide two stereogenic centers
c.

3° alkyl halide no stereogenic centers
7.4 To name a compound with the IUPAC system:
[1] Name the parent chain by finding the longest carbon chain.
[2] Number the chain so the first substituent gets the lower number. Then name and number all substituents, giving like substituents a prefix (di, tri, etc.). To name the halogen substituent, change the -ine ending to -o.
[3] Combine all parts, alphabetizing substituents, and ignoring all prefixes except iso.
a. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}(\mathrm{Cl}) \mathrm{CH}_{2} \mathrm{CH}_{3}$

[2]

[3] 3-chloro-2-methylpentane
b.
[2]

[3] 2-bromo-5,5-dimethylheptane
[1]

7 carbon alkane $=$ heptane
c.
[1]

[2]

[3] 1-bromo-2-methylcyclohexane
7 carbon alkane $=$ heptane
[2]

[3] 2-fluoro-5,5-dimethylheptane
7.5 To work backwards from a name to a structure:
[1] Find the parent name and draw that number of carbons. Use the suffix to identify the functional group (-ane = alkane).
[2] Arbitrarily number the carbons in the chain. Add the substituents to the appropriate carbon.
a. 3-chloro-2-methylhexane
[1] 6 carbon alkane

[2]

b. 4-ethyl-5-iodo-2,2-dimethyloctane
[1] 8 carbon alkane
[2]

c. cis-1,3-dichlorocyclopentane
[1] 5 carbon cycloalkane

d. 1,1,3-tribromocyclohexane
[1] 6 carbon cycloalkane

[2]

e. propyl chloride
[1] 3 carbon alkyl group
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-$
[2] chloride on end

f. sec-butyl bromide
[1] 4 carbon alkyl group

[2] bromide

7.6 a. Because an $s p^{2}$ hybridized C has a higher percent s-character than an $s p^{3}$ hybridized C , it holds electron density closer to C . This pulls a little more electron density towards C , away

b.

7.7 a. Since chondrocole A has 10 C 's and only one functional group capable of hydrogen bonding to water (an ether), it is insoluble in $\mathrm{H}_{2} \mathrm{O}$. Because it is organic, it is soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Chapter 7-8
b.

c.

enantiomer

constitutional isomer
7.8 To draw the products of a nucleophilic substitution reaction:
[1] Find the $\boldsymbol{s} \boldsymbol{p}^{3}$ hybridized electrophilic carbon with a leaving group.
[2] Find the nucleophile with lone pairs or electrons in π bonds.
[3] Substitute the nucleophile for the leaving group on the electrophilic carbon.
a.
 $+\quad-\stackrel{-}{\mathrm{OCH}_{2}} \mathrm{CH}_{3}$
nonbonded e^{-}pairs \qquad

leaving group
nucleophile
b.

c.

d.

7.9 Use the steps from Answer 7.8 and then draw the proton transfer reaction.
a.

b.

7.10 Draw the structure of CPC using the steps from Answer 7.8.

7.11 Compare the leaving groups based on these trends:

- Better leaving groups are weaker bases.
- A neutral leaving group is always better than its conjugate base.
a. $\mathrm{Cl}^{-}, \stackrel{\mathrm{I}^{-}}{\text {farther down a column }}$ of the periodic table less basic
b. $\underset{\text { neutral compound }}{\mathrm{NH}_{3}}, \mathrm{NH}_{2}^{-}$ less basic
better leaving group
c. $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}$
farther down a column of the periodic table less basic better leaving group
7.12 Good leaving groups include $\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}$, and $\mathrm{H}_{2} \mathrm{O}$.
a.
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Br}$
Br^{-}is a good
leaving group.
b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
c. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\underbrace{\stackrel{+}{\mathrm{O}} \mathrm{H}_{2}}_{\uparrow}$
No good leaving group.
$\mathrm{H}_{2} \mathrm{O}$ is a good No good leaving group.
leaving group. $\quad \mathrm{H}^{-}$is too strong a base.
7.13 To decide whether the equilibrium favors the starting material or the products, compare the nucleophile and the leaving group. The reaction proceeds towards the weaker base.
a.
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{NH}_{2}$ \qquad $\begin{aligned} & \mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{Br}+{ }^{-} \mathrm{NH}_{2} \\ & \text { leaving group } \\ & \mathrm{p} K_{\mathrm{a}}\left(\mathrm{NH}_{3}\right)=38\end{aligned}$
Reaction favors nucleophile better leaving group weaker base
starting material.

$$
\mathrm{p} K_{\mathrm{a}}(\mathrm{HBr})=-9
$$

b. $+\underset{\text { nucleophile }}{\longrightarrow}$
PK $(\mathrm{HCN})=9.1$

$$
\begin{gathered}
\mathrm{CN}^{+} \mathrm{I}^{-} \\
\text {leaving group } \\
\text { better leaving group } \\
\text { weaker base } \\
\mathrm{p} K_{\mathrm{a}}(\mathrm{HI})=-10
\end{gathered}
$$

Reaction favors product.
$\mathrm{p} K_{\mathrm{a}}(\mathrm{HCN})=9.1$
7.14 It is not possible to convert $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ to $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ by nucleophilic substitution with NaCl because ${ }^{-} \mathrm{OH}$ is a stronger base and poorer leaving group than Cl^{-}. The equilibrium favors the reactants, not the products.

Chapter 7-10
7.15 Use these three rules to find the stronger nucleophile in each pair:
[1] Comparing two nucleophiles having the same attacking atom, the stronger base is a stronger nucleophile.
[2] Negatively charged nucleophiles are always stronger than their conjugate acids.
[3] Across a row of the periodic table, nucleophilicity decreases when comparing species of similar charge.

A negatively charged nucleophile is stronger than its conjugate acid. stronger nucleophile

Across a row of the periodic table, nucleophilicity decreases with species of the same charge. stronger nucleophile
c.

7.16 Polar protic solvents are capable of hydrogen bonding, and therefore must contain a \mathbf{H} bonded to an electronegative \mathbf{O} or \mathbf{N}. Polar aprotic solvents are incapable of hydrogen bonding, and therefore do not contain any $\mathrm{O}-\mathrm{H}$ or $\mathrm{N}-\mathrm{H}$ bonds.
a.
 polar protic
b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$
no O-H bonds polar aprotic
c. $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}$
no O-H bonds polar aprotic
7.17 - In polar protic solvents, the trend in nucleophilicity is opposite to the trend in basicity down a column of the periodic table so that nucleophilicity increases.

- In polar aprotic solvents, the trend is identical to basicity so that nucleophilicity decreases down a column.

7.18 The stronger base is the stronger nucleophile except in polar protic solvents when nucleophilicity increases down a column. For other rules, see Answers 7.15 and 7.17.

7.19 To determine what nucleophile is needed to carry out each reaction, look at the product to see what has replaced the leaving group.
a. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2}-\mathrm{Br} \longrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2}-\mathrm{SH}$ SH replaces Br . HS^{-}is needed.
b.
c. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2}-\mathrm{Br} \longrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2}-\mathrm{OCOCH}_{3}$ OCOCH_{3} replaces Br . $\mathrm{CH}_{3} \mathrm{COO}^{-}$is needed.
d. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2}-\mathrm{Br} \longrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}$
$\mathrm{C} \equiv \mathrm{CH}$ replaces Br .
$\mathrm{HC} \equiv \mathrm{C}^{-}$is needed.
7.20 The general rate equation for an $\mathrm{S}_{\mathrm{N}} 2$ reaction is rate $=k[\mathrm{RX}]\left[: \mathrm{Nu}^{-}\right]$.
a. $[R X]$ is tripled, and $\left[: \mathrm{Nu}^{-}\right]$stays the same: rate triples.
b. Both $[R X]$ and $\left[: \mathrm{Nu}^{-}\right]$are tripled: rate increases by a factor of $\mathbf{9}(\mathbf{3} \times \mathbf{3}=\mathbf{9})$.
c. $[R X]$ is halved, and $\left[: \mathrm{Nu}^{-}\right]$stays the same: rate halved.
d. $[R X]$ is halved, and $\left[: \mathrm{Nu}^{-}\right]$is doubled: rate stays the same $(\mathbf{1} / \mathbf{2} \times \mathbf{2}=\mathbf{1})$.
7.21 The transition state in an $\mathrm{S}_{\mathrm{N}} 2$ reaction has dashed bonds to both the leaving group and the nucleophile, and must contain partial charges.

b.

Chapter 7-12
7.22 All $\mathrm{S}_{\mathrm{N}} 2$ reactions have one step.

7.23 To draw the products of $\mathrm{S}_{\mathrm{N}} 2$ reactions, replace the leaving group by the nucleophile, and then draw the stereochemistry with inversion at the stereogenic center.
a.

b.

7.24 Increasing the number of R groups increases crowding of the transition state and decreases the rate of an $\mathrm{S}_{\mathrm{N}} 2$ reaction.
a.

or

2° alkyl halide $\quad \begin{gathered}1^{\circ} \text { alkyl halide } \\ \text { faster reaction }\end{gathered}$
b.
 or

2° alkyl halide
3° alkyl halide
7.25

7.26 In a first-order reaction, the rate changes with any change in [RX]. The rate is independent of any change in $\left[: \mathrm{Nu}^{-}\right]$.
a. [RX] is tripled, and [: $\left.\mathrm{Nu}^{-}\right]$stays the same: rate triples.
b. Both $[\mathrm{RX}]$ and $\left[: \mathrm{Nu}^{-}\right]$are tripled: rate triples.
c. $[\mathrm{RX}]$ is halved, and $\left[: \mathrm{Nu}^{-}\right]$stays the same: rate halved.
d. $[\mathrm{RX}]$ is halved, and $\left[: \mathrm{Nu}^{-}\right]$is doubled: rate halved.
7.27 In $\mathrm{S}_{\mathbf{N}} 1$ reactions, racemization always occurs at a stereogenic center. Draw two products, with the two possible configurations at the stereogenic center.

7.28 Carbocations are classified by the number of \mathbf{R} groups bonded to the carbon:

0 R groups $=$ methyl, 1 R group $=1^{\circ}, 2 \mathrm{R}$ groups $=2^{\circ}$, and 3 R groups $=3^{\circ}$.
a.

2 R groups 2° carbocation
b. $\left(\mathrm{CH}_{3}\right)_{3} \stackrel{C}{C}_{+}^{+}$
c.

3 R groups
d.

$2 R$ groups
1 R group 1° carbocation
2° carbocation
7.29 For carbocations: Increasing number of R groups = Increasing stability.

1° carbocation

$$
3^{\circ} \text { carbocation }
$$

least stable

$$
\begin{aligned}
& 2^{\circ} \text { carbocation } \\
& \text { intermediate } \\
& \text { stability }
\end{aligned}
$$

most stable
7.30 For carbocations: Increasing number of R groups = Increasing stability.

1° carbocation least stable

2° carbocation intermediate stability

3° carbocation most stable
7.31 The rate of an $S_{N} 1$ reaction increases with increasing alkyl substitution.
a.
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$
or
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{Br}$
3° alkyl halide 1° alkyl halide faster $\mathrm{S}_{\mathrm{N}} 1$ reaction slower $\mathrm{S}_{\mathrm{N}} 1$ reaction
b.

or

3° alkyl halide
2° alkyl halide faster $\mathrm{S}_{\mathbf{N}} 1$ reaction slower $\mathrm{S}_{\mathrm{N}} 1$ reaction

Chapter 7-14
7.32 - For methyl and 1° alkyl halides, only $\mathrm{S}_{\mathrm{N}} 2$ will occur.

- For 2° alkyl halides, $\mathrm{S}_{\mathrm{N}} 1$ and $\mathrm{S}_{\mathrm{N}} 2$ will occur.
- For 3° alkyl halides, only $\mathrm{S}_{\mathrm{N}} 1$ will occur.
a.

2° alkyl halide
$\mathrm{S}_{\mathrm{N}} 1$ and $\mathrm{S}_{\mathrm{N}} \mathbf{2}$
b.

c.

2° alkyl halide $\mathrm{S}_{\mathrm{N}} 1$ and $\mathrm{S}_{\mathrm{N}} 2$
d.

3° alkyl halide
$\mathrm{S}_{\mathrm{N}} 1$
7.33 - Draw the product of nucleophilic substitution for each reaction.
- For methyl and 1° alkyl halides, only $\mathrm{S}_{\mathrm{N}} 2$ will occur.
- For 2° alkyl halides, $\mathrm{S}_{\mathrm{N}} 1$ and $\mathrm{S}_{\mathrm{N}} 2$ will occur and other factors determine which mechanism operates.
- For 3° alkyl halides, only $\mathrm{S}_{\mathrm{N}} 1$ will occur.

7.34 First decide whether the reaction will proceed via an $\mathrm{S}_{\mathrm{N}} 1$ or $\mathrm{S}_{\mathrm{N}} 2$ mechanism. Then draw the products with stereochemistry.
a.

b.

7.35 Compounds with better leaving groups react faster. Weaker bases are better leaving groups.
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$
or
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{I}$
weaker base better leaving group
b. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$ or
$\stackrel{\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CI}}{\uparrow}$
better leaving group
c. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{OH}$ or

better leaving group
d. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ or
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \underset{\uparrow}{\mathrm{OCOCH}_{3}}$
better leaving group
7.36 - Polar protic solvents favor the $S_{N} 1$ mechanism by solvating the intermediate carbocation and halide.
- Polar aprotic solvents favor the $\mathrm{S}_{\mathrm{N}} 2$ mechanism by making the nucleophile stronger.

a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	b. $\mathrm{CH}_{3} \mathrm{CN}$	c. $\mathrm{CH}_{3} \mathrm{COOH}$	d. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$
polar protic solvent	polar aprotic solvent	polar protic solvent	polar aprotic solvent
contains an $\mathrm{O}-\mathrm{H}$ bond	no $\mathrm{O}-\mathrm{H}$ or $\mathrm{N}-\mathrm{H}$ bond	contains an $\mathrm{O}-\mathrm{H}$ bond	no $\mathrm{O}-\mathrm{H}$ or $\mathrm{N}-\mathrm{H}$ bond
favors $\mathbf{S}_{\mathbf{N}} \mathbf{1}$	favors $\mathbf{S}_{\mathbf{N}} \mathbf{2}$	favors $\mathbf{S}_{\mathbf{N}} \mathbf{1}$	favors $\mathbf{S}_{\mathbf{N}} \mathbf{2}$

7.37 Compare the solvents in the reactions below. For the solvent to increase the reaction rate of an $\mathrm{S}_{\mathbf{N}} 1$ reaction, the solvent must be polar protic.
a.

$+\mathrm{HCl}$
$\mathrm{CH}_{3} \mathrm{OH}$
Polar protic solvent increases the rate of an $\mathrm{S}_{\mathrm{N}} 1$ reaction.
b.

DMF $\left[\mathrm{HCON}\left(\mathrm{CH}_{3}\right)_{2}\right]$ Polar aprotic solvent increases the rate of an $\mathrm{S}_{\mathrm{N}} 2$ reaction.
c.

$\mathrm{S}_{\mathrm{N}} 2$ reaction

$$
\mathrm{HMPA}\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right]_{3} \mathrm{P}=\mathrm{O}
$$

Polar aprotic solvent increases the rate of an $S_{N} 2$ reaction.
7.38 To predict whether the reaction follows an $\mathrm{S}_{\mathrm{N}} 1$ or $\mathrm{S}_{\mathrm{N}} 2$ mechanism:
[1] Classify RX as a methyl, $1^{\circ}, 2^{\circ}$, or 3° halide. (Methyl, $1^{\circ}=\mathrm{S}_{\mathrm{N}} 2 ; 3^{\circ}=\mathrm{S}_{\mathrm{N}} 1 ; 2^{\circ}=$ either.)
[2] Classify the nucleophile as strong or weak. (Strong favors $\mathrm{S}_{\mathrm{N}} 2$; weak favors $\mathrm{S}_{\mathrm{N}} 1$.)
[3] Classify the solvent as polar protic or polar aprotic. (Polar protic favors $\mathrm{S}_{\mathrm{N}} 1$; polar aprotic favors $\mathrm{S}_{\mathrm{N}} 2$.)
a.

1° alkyl halide
$\mathrm{S}_{\mathrm{N}} 2$
b.

Chapter 7-16
c.

d.

7.39 Vinyl carbocations are even less stable than 1° carbocations.
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\stackrel{+}{\mathrm{C}} \mathrm{H}$
vinyl carbocation least stable
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \stackrel{+}{\mathrm{C}} \mathrm{H}_{2}$
1° carbocation
intermediate stability
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \stackrel{+}{\mathrm{C}} \mathrm{HCH}_{3}$
2° carbocation most stable
7.40 Convert each ball-and-stick model to a skeletal or condensed structure and draw the reactants.
a.

b.
carbon
framework

c.

 framework
d.

7.41

7.42 Use the directions from Answer 7.4 to name the compounds.
a.

7 C chain = heptane bromo at C2 ethyl at C5 one stereogenic center- R
(2R)-2-bromo-5-ethylheptane
b.

5 C ring = cyclopentane chloro at C1 isopropyl at C3 trans isomer-one substituent up, one down (1R,3R)-trans-1-chloro-3-isopropylcyclopentane

7.43

a.
 inversion (equatorial to axial)
b.

inversion (axial to equatorial)
7.44 Use the directions from Answer 7.4 to name the compounds.
a.
[1] $\frac{\mathrm{CH}_{3}}{\substack{1 \\ \mathrm{CH}_{3}-\mathrm{C}-\mathrm{CH}_{2} \mathrm{CH}_{2} \\ \frac{\mathrm{CH}}{3}}} \mathrm{~F}$

b. [1]
4 carbon alkane = butane
[3] 1-fluoro-3,3-dimethylbutane
[2]

[3] 3-ethyl-1-iodo-2-methylhexane

Chapter 7-18
c. [1] $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{Br}$

[3] 1-bromo-2,2-dimethylpropane
3 carbon alkane $=$ propane
d. ${ }^{[1]}$

8 carbon alkane $=$ octane
[2]

[3] 6-bromo-2-chloro-6-methyloctane

5 carbon cycloalkane $=$ cyclopentane
[2]

[2]

[3] trans-1,2-dichlorocyclohexane

6 carbon cycloalkane $=$ cyclohexane
g.[1] $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{CH}(\mathrm{Cl}) \mathrm{CH}_{2} \mathrm{Cl}$

[2]

5 carbon alkane = pentane
Cl
6 carbon alkane = hexane
(Indicate the R,S designation also)
4,4-dimethyl
[3] (2R)-2-iodo-4,4-dimethylhexane

7.45 To work backwards to a structure, use the directions in Answer 7.5.
a. isopropyl bromide

b. 3-bromo-4-ethylheptane

c. 1,1-dichloro-2-methylcyclohexane

d. trans-1-chloro-3-iodocyclobutane

e. 1-bromo-4-ethyl-3-fluorooctane

f. (3S)-3-iodo-2-methylnonane

g. (1R,2R)-trans-1-bromo-2-chlorocyclohexane

h. (5R)-4,4,5-trichloro-3,3-dimethyldecane

7.46
a.

d.

g.

b.

e.

h.

c.

f.

7.47

1-chloro-2,2-dimethylpropane

2-chloro-2-methylbutane

2-chloropentane
[${ }^{*}$ denotes stereogenic center]

> Two stereoisomers

Chapter 7-20

2-chloro-3-methylbutane [${ }^{*}$ denotes stereogenic center]

Two stereoisomers

Counterclockwise
"4" in front =
R
Counterclockwise
"4" in back =

Two stereoisomers

1-chloro-2-methylbutane
[${ }^{*}$ denotes stereogenic center]

7.48
a. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$ or $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$ b.
larger surface area = stronger intermolecular forces $=$ higher boiling point

or

larger halide $=$ more polarizable $=$ higher boiling point
c.

nonpolar

more polar = only VDW forces higher boiling point
7.49
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Br}+\mathrm{OH} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{Br}^{-}$
b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Br}+{ }^{-} \mathrm{SH} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SH}+\mathrm{Br}^{-}$
c. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Br}+{ }^{-} \mathrm{CN} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}+\mathrm{Br}$
d. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Br}+{ }^{-} \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}+\mathrm{Br}^{-}$
e. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Br}+{ }^{-} \mathrm{C} \equiv \mathrm{CH} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}+\mathrm{Br}^{-}$
f. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Br}+\mathrm{H}_{2} \mathrm{O}: \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \stackrel{+}{\mathrm{O}} \mathrm{H}_{2}+\mathrm{Br} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{HBr}$
g. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Br}+\ddot{\mathrm{N}} \mathrm{H}_{3} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}+\mathrm{Br} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{HBr}$
h. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Br}+\mathrm{Na}^{+} \mathrm{I}^{-} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{I}+\mathrm{Na}^{+} \mathrm{Br}^{-}$
i. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Br}+\mathrm{Na}^{+} \mathrm{N}_{3}{ }^{-} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}+\mathrm{Na}^{+} \mathrm{Br}^{-}$
7.50 Use the steps from Answer 7.8 and then draw the proton transfer reaction, when necessary.
a.

b.

c.

d.

leaving group nucleophile
e.

leaving group nucleophile
f.

7.51 A good leaving group is a weak base.

a.

bad leaving group
${ }^{-} \mathrm{OH}$ is a strong base.
c.

This has only $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$ bonds. No good leaving group.
e.

bad leaving group
NH_{2} is a strong base.
b.

d.

good leaving group
f. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \underset{\uparrow}{\mathrm{I}}$
I good leaving group weak base
7.52 Use the rules from Answer 7.11.
a. increasing leaving group ability: $-\mathrm{NH}_{2}<-\mathrm{OH}<\mathrm{F}^{-}$

most basic least basic worst leaving best leaving group group

Chapter 7-22

7.53 Compare the nucleophile and the leaving group in each reaction. The reaction will occur if it proceeds towards the weaker base. Remember that the stronger the acid (lower $\mathrm{p} K_{\mathrm{a}}$), the weaker the conjugate base.
a.

c.

7.54 Use the directions in Answer 7.15.
a. Across a row of the periodic table nucleophilicity decreases.

$$
-\mathrm{OH}<-\mathrm{NH}_{2}<\mathrm{CH}_{3}-
$$

b. • In a polar protic solvent $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$, nucleophilicity increases down a column of the periodic table, so: - ${ }^{-S H}$ is more nucleophilic than ${ }^{-} \mathrm{OH}$.

- Negatively charged species are more nucleophilic than neutral species so ${ }^{-} \mathrm{OH}$ is more nucleophilic than $\mathrm{H}_{2} \mathrm{O}$.

$$
\mathrm{H}_{2} \mathrm{O}<-\mathrm{OH}<-\mathrm{SH}
$$

c. • In a polar protic solvent $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$, nucleophilicity increases down a column of the periodic table, so: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~S}^{-}$is more nucleophilic than $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{-}$.

- For two species with the same attacking atom, the more basic is the more nucleophilic so $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{-}$is more nucleophilic than $\mathrm{CH}_{3} \mathrm{COO}^{-}$.

$$
\mathrm{CH}_{3} \mathrm{COO}^{-}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{-}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~S}^{-}
$$

d. Compare the nucleophilicity of N, S, and O . In a polar aprotic solvent (acetone), nucleophilicity parallels basicity.

$$
\mathrm{CH}_{3} \mathrm{SH}<\mathrm{CH}_{3} \mathrm{OH}<\mathrm{CH}_{3} \mathrm{NH}_{2}
$$

e. In a polar aprotic solvent (acetone), nucleophilicity parallels basicity. Across a row and down a column of the periodic table nucleophilicity decreases.

$$
\mathrm{Cl}^{-}<\mathrm{F}^{-}<-\mathrm{OH}
$$

f. Nucleophilicity decreases across a row so ${ }^{-} \mathrm{SH}$ is more nucleophilic than Cl^{-}. In a polar protic solvent $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$, nucleophilicity increases down a column so Cl^{-} is more nucleophilic than F^{-}.

$$
\mathrm{F}^{-}<\mathrm{Cl}^{-}<-\mathrm{SH}
$$

7.55 Polar protic solvents are capable of hydrogen bonding, so they must contain a H bonded to an electronegative O or N . Polar aprotic solvents are incapable of hydrogen bonding, so they do not contain any $\mathrm{O}-\mathrm{H}$ or $\mathrm{N}-\mathrm{H}$ bonds.
a. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$
contains $\mathrm{O}-\mathrm{H}$ bond protic
c. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
no $\mathrm{O}-\mathrm{H}$ or $\mathrm{N}-\mathrm{H}$ bond aprotic
e. $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}$
no O-H or N-H bond aprotic
b. $\mathrm{CH}_{3} \mathrm{NO}_{2}$ no $\mathrm{O}-\mathrm{H}$ or $\mathrm{N}-\mathrm{H}$ bond aprotic
d. NH_{3} contains $\mathrm{N}-\mathrm{H}$ bond protic
f. HCONH_{2}
contains an $\mathrm{N}-\mathrm{H}$ bond protic

7.56

The amine N is more nucleophilic since the electron pair is localized on the N .

The amide N is less nucleophilic
since the electron pair is delocalized by resonance.

7.57

$$
1^{\circ} \text { alkyl halide }
$$

$\mathrm{S}_{\mathrm{N}} 2$ reaction
a. Mechanism:

b. Energy diagram:

Reaction coordinate
c. Transition state:

d. Rate equation: one-step reaction with both nucleophile and alkyl halide in the only step:
rate $=\boldsymbol{k}[\mathrm{R}-\mathrm{Br}]\left[{ }^{-} \mathrm{CN}\right]$
e. [1] The leaving group is changed from Br^{-}to I^{-}:

Leaving group becomes less basic \rightarrow a better leaving group \rightarrow faster reaction.
[2] The solvent is changed from acetone to $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$:
Solvent changed to polar protic \rightarrow decreases reaction rate.
[3] The alkyl halide is changed from $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{Br}$ to $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{Br}) \mathrm{CH}_{3}$:
Changed from 1° to 2° alkyl halide \rightarrow the alkyl halide gets more crowded and the reaction
rate decreases.
[4] The concentration of ${ }^{-} \mathrm{CN}$ is increased by a factor of 5 .
Reaction rate will increase by a factor of 5 .
[5] The concentration of both the alkyl halide and ${ }^{-} \mathrm{CN}$ are increased by a factor of 5: Reaction rate will increase by a factor of 25 ($5 \times 5=25$).

Chapter 7-24
7.58 Use the directions from Answer 7.24.
a.

3° alkyl halide least reactive

2° alkyl halide intermediate reactivity

1° alkyl halide most reactive
b.

vinyl halide

2° alkyl halide intermediate

least reactive reactivity
1° alkyl halide most reactive
7.59
better leaving group
a.

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}+{ }^{-} \mathrm{OH} \longrightarrow$
b.

c.

less steric hindrance
d.

7.60 All $\mathrm{S}_{\mathrm{N}} 2$ reactions proceed with backside attack of the nucleophile. When nucleophilic attack occurs at a stereogenic center, inversion of configuration occurs.
a.

b.

c.

7.61 Follow the definitions from Answer 7.28.
a.

2° carbocation
c.

3° carbocation
e.

b.

3° carbocation
d.

2° carbocation
7.62 For carbocations: Increasing number of \mathbf{R} groups = Increasing stability.
a.

7.63 Both \mathbf{A} and \mathbf{B} are resonance stabilized, but the N atom in \mathbf{B} is more basic and therefore more willing to donate its electron pair.

A

B

more basic N atom
b.

1° carbocation
least stable

2° carbocation stablity

3° carbocation most stable

This resonance form stabilizes the carbocation more than the equivalent resonance structure for \mathbf{A}.

Thus, \mathbf{B} is more stable then \mathbf{A}.
7.64
a. Mechanism: $\mathrm{S}_{\mathrm{N}} 1$ only

$\mathrm{B}+\mathrm{I}^{-}$

Chapter 7-26
b. Energy diagram:

c. Transition states:

d. rate equation: rate $=\boldsymbol{k}\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CICH}_{2} \mathrm{CH}_{3}\right]$
e. [1] Leaving group changed from I^{-}to Cl^{-}: rate decreases since I^{-}is a better leaving group.
[2] Solvent changed from $\mathrm{H}_{2} \mathrm{O}$ (polar protic) to DMF (polar aprotic): rate decreases since polar protic solvent favors $\mathrm{S}_{\mathrm{N}} 1$.
[3] Alkyl halide changed from 3° to 2° : rate decreases since 2° carbocations are less stable.
[4] [$\left.\mathrm{H}_{2} \mathrm{O}\right]$ increased by factor of five: no change in rate since $\mathrm{H}_{2} \mathrm{O}$ is not in rate equation.
[5] [R-X] and $\left[\mathrm{H}_{2} \mathrm{O}\right]$ increased by factor of five: rate increases by a factor of five. (Only the concentration of $\mathrm{R}-\mathrm{X}$ affects the rate.)

7.65 The rate of an $S_{\mathbf{N}} 1$ reaction increases with increasing alkyl substitution.

a.

 intermediate reactivity

3° alkyl halide
most reactive
b.

aryl halide least reactive

2° alkyl halide intermediate reactivity

3° alkyl halide
most reactive
7.66 The rate of an $\mathrm{S}_{\mathrm{N}} 1$ reaction increases with increasing alkyl substitution, polar protic solvents, and better leaving groups.
a.
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}+\mathrm{H}_{2} \mathrm{O} \longrightarrow$
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CI}+\mathrm{H}_{2} \mathrm{O} \longrightarrow$ better leaving group
faster reaction
b.

c.

d.
 $+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}]{ }$ polar protic solvent faster reaction

7.67
a.

 $+\mathrm{HBr}$
b.

7.68 The 1° alkyl halide is also allylic, so it forms a resonance-stabilized carbocation. Increasing the stability of the carbocation by resonance, increases the rate of the $\mathrm{S}_{\mathrm{N}} 1$ reaction.

Use each resonance structure individually to continue the mechanism:

7.69

a.

b.

c.

Chapter 7-28
d.

e.
 $+\mathrm{Br}$ reaction at a stereogenic center inversion of configuration
2° alkyl halide $\mathrm{S}_{\mathrm{N}} 1$ and $\mathrm{S}_{\mathrm{N}} 2$
strong nucleophile polar aprotic solvent

Both favor $\mathbf{S}_{\mathbf{N}} 2$.
f.

7.71 First decide whether the reaction will proceed via an $\mathrm{S}_{\mathrm{N}} 1$ or $\mathrm{S}_{\mathrm{N}} 2$ mechanism (Answer 7.38), and then draw the mechanism.

7.72

7.73

7.74
a. Two diastereomers (\mathbf{C} and \mathbf{D}) are formed as products from the two enantiomers of \mathbf{A}.

b.

Since both stereogenic centers in \mathbf{D} have the S configuration and the corresponding stereogenic centers in quinapril are also S, \mathbf{D} is needed to synthesize the drug.

Chapter 7-30

7.75

7.76 In the first reaction, substitution occurs at the stereogenic center. Since an achiral, planar carbocation is formed, the nucleophile can attack from either side, thus generating a racemic mixture.

In the second reaction, the starting material contains a stereogenic center, but the nucleophile does not attack at that carbon. Since a bond to the stereogenic center is not broken, the configuration is retained and a chiral product is formed.

(5R)-2-bromo-2,5-dimethylnonane

Reaction does not occur at the stereogenic center.
optically active
7.77
a.

The nucleophile has replaced the leaving group. Missing reagent:

b.

The nucleophile has replaced the leaving group. Missing reagent: $\mathrm{C} \equiv \mathrm{CH}$
c.

The nucleophile has replaced the halide.
Starting material:

d.

The nucleophile has replaced the halide. Starting material:

Cl The leaving group must have the opposite orientation to the position of the nucleophile in the product.
7.78 To devise a synthesis, look for the carbon framework and the functional group in the product. The carbon framework is from the alkyl halide and the functional group is from the nucleophile.
a.

b.

c. \quad| $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$ |
| :---: |
| carbon |
| framework | \(\begin{gathered}functional

group\end{gathered}\)

d.

functional
group

2° halide
framework
or

functional framework
group

This path is preferred. The strong nucleophile favors an $S_{N} 2$ reaction so an unhindered 1° alkyl halide reacts faster.

Chapter 7-32
7.79 Work backwards to determine the alkyl chloride needed to prepare benzalkonium chloride \mathbf{A}.

b.

$+$

Cl^{-}
C

 A
7.80

very crowded 3° halide

7.81

7.82
a.

b.

c.

This electron pair on quinuclidine is much more available than the one on triethylamine.

$$
\begin{array}{|l|}
\hline \text { less steric hindrance } \\
\text { more nucleophilic }
\end{array}
$$

7.84

7.85

Chapter 7-34
7.86

7.87
a.

(S)-1-phenyl-1-propanol (R)-1-phenyl-1-propanol $[\alpha]=-48$

$[\alpha]=+48$

$$
\begin{aligned}
\text { ee } & =\frac{[\alpha] \text { mixture }}{[\alpha] \text { pure enantiomer }} \times 100 \% \\
& =\frac{+5.0}{+48} \times 100 \%=10 . \% \text { excess of } R \text { isomer }
\end{aligned}
$$

$$
90 \% \text { racemic mixture }=45 \% R \text { and } 45 \% \mathrm{~S}
$$

$$
\text { Total } R \text { isomer }=45+10=55 \% R \text { isomer }
$$

b. The R product is the product of inversion and it predominates.

c. The weak nucleophile favors an $\mathrm{S}_{\mathrm{N}} 1$ reaction, which occurs by way of an intermediate carbocation. Perhaps there is more inversion than retention because $\mathrm{H}_{2} \mathrm{O}$ attacks the intermediate carbocation while the Br^{-}leaving group is still in the vicinity of the carbocation. The Br^{-}would then shield one side of the carbocation and backside attack would be slightly favored.

Chapter 8 Alkyl Halides and Elimination Reactions

Chapter Review

A comparison between nucleophilic substitution and β-elimination

Nucleophilic substitution-A nucleophile attacks a carbon atom (7.6).

β-Elimination-A base attacks a proton (8.1).

Similarities

- In both reactions RX acts as an electrophile, reacting with an electron-rich reagent.
- Both reactions require a good leaving group \mathbf{X} :- willing to accept the electron density in the $\mathrm{C}-\mathrm{X}$ bond.

Differences

- In substitution, a nucleophile attacks a single carbon atom.
- In elimination, a Brønsted-Lowry base removes a proton to form a π bond, and two carbons are involved in the reaction.

The importance of the base in E2 and E1 reactions (8.9)

The strength of the base determines the mechanism of elimination.

- Strong bases favor E2 reactions.
- Weak bases favor E1 reactions.

Chapter 8-2

E1 and E2 mechanisms compared

E2 mechanism

E1 mechanism

[1] Mechanism	one step (8.4B)	- two steps (8.6B)
[2] Alkyl halide	- rate: $\mathrm{R}_{3} \mathrm{CX}>\mathrm{R}_{2} \mathrm{CHX}>$ $\mathrm{RCH}_{2} \mathrm{X}(8.4 \mathrm{C})$	- rate: $\mathrm{R}_{3} \mathrm{CX}>\mathrm{R}_{2} \mathrm{CHX}>\mathrm{RCH}_{2} \mathrm{X}$ (8.6C)
[3] Rate equation	- \quad rate $=k[\mathrm{RX}][\mathrm{B}:]$ - second-order kinetics (8.4A)	- \quad rate $=k[\mathrm{RX}]$ - first-order kinetics (8.6A)
[4] Stereochemistry	- anti periplanar arrangement of H and X (8.8)	- trigonal planar carbocation intermediate (8.6B)
[5] Base	- favored by strong bases (8.4B)	- favored by weak bases (8.6C)
[6] Leaving group	- better leaving group \rightarrow faster reaction (8.4B)	- better leaving group \rightarrow faster reaction (Table 8.4)
[7] Solvent	- favored by polar aprotic solvents (8.4B)	- favored by polar protic solvents (Table 8.4)
[8] Product	- more substituted alkene favored (Zaitsev rule, 8.5)	- more substituted alkene favored (Zaitsev rule, 8.6C)

Summary chart on the four mechanisms: $\mathbf{S}_{\mathbf{N}} \mathbf{1}, \mathrm{S}_{\mathbf{N}} \mathbf{2}, \mathrm{E} 1$, and E2

Alkyl halide type	Conditions	Mechanism
$\mathbf{1}^{\circ} \mathbf{R C H}_{\mathbf{2}} \mathbf{X}$	strong nucleophile	$\mathbf{S}_{\mathbf{N}} \mathbf{2}$
	strong bulky base	$\mathbf{E 2}$
$\mathbf{2}^{\mathbf{0}} \mathbf{R}_{\mathbf{2}} \mathbf{C H X}$	strong base and nucleophile	$\mathbf{S}_{\mathbf{N}} \mathbf{2}+\mathbf{E} \mathbf{2}$
	strong bulky base	$\mathbf{E 2}$
	weak base and nucleophile	$\mathbf{S}_{\mathbf{N}} \mathbf{1}+\mathbf{E 1}$
$\mathbf{3}^{\mathbf{0}} \mathbf{R}_{\mathbf{3}} \mathbf{C X}$	weak base and nucleophile	$\mathbf{S}_{\mathbf{N}} \mathbf{1}+\mathbf{E 1}$
	strong base	$\mathbf{E 2}$

Zaitsev rule

- β-Elimination affords the more stable product having the more substituted double bond.
- Zaitsev products predominate in E2 reactions except when a cyclohexane ring prevents trans diaxial arrangement.

Practice Test on Chapter Review

1. Which of the following is true about an E1 reaction?
2. The reaction is faster with better leaving groups.
3. The reaction is fastest with 3° alkyl halides.
4. The reaction is faster with stronger bases.
5. Statements (1) and (2) are true.
6. Statements (1), (2), and (3) are all true.
7. Consider the $\mathrm{S}_{\mathrm{N}} 2$ and E 1 reaction mechanisms. What effect on the rate of the reaction is observed when each of the following changes is made? Fill in each box of the table with one of the following phrases: increases, decreases, or remains the same.

Change	$\mathrm{S}_{\mathrm{N}} 2$ Mechanism	E1 Mechanism
a. The alkyl halide is changed from $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$ to $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$.		
b. The solvent is changed from $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$ to $\mathrm{CH}_{3} \mathrm{CH} \mathrm{H}_{2} \mathrm{OH}$.		
c. The nucleophile/base is changed from -OH to $\mathrm{H}_{2} \mathrm{O}$.		
d. The alkyl halide is changed from $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$ to $\mathrm{CH}_{3} \mathrm{CH}$ I.		
e. The concentration of the base/nucleophile is increased by a factor of five.		

3. Rank the following compounds in order of increasing reactivity in an E2 elimination reaction. Rank the most reactive compound as $\mathbf{3}$, the least reactive compound as $\mathbf{1}$, and the compound of intermediate reactivity as $\mathbf{2}$.

A

B

c
4. Draw the organic products formed in the following reactions.
a.

c.

b.

d.

Chapter 8-4
5. a. Fill in the appropriate alkyl halide needed to synthesize the following compound as a single product using the given reagents.

b. What starting material is needed for the following reaction? The starting material must yield product cleanly, in one step without any other organic side products.

$$
\text { D } \xrightarrow{\mathrm{K}^{+}-\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}} \xrightarrow[\substack{\text { (cis and trans mixture) }}]{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{3}}
$$

6. Draw all products formed in the following reaction.

Answers to Practice Test

1. 4
2. $\mathrm{S}_{\mathrm{N}} 2$
a. increases
b. decreases
c. decreases
d. increases
e. increases

E1
decreases increases same increases same
3. $\mathbf{A}-2$
B-1
4.
a.

b.

c.

d.

5.
a.

C
b.

D
6.

Answers to Problems

8.1 - The carbon bonded to the leaving group is the α carbon. Any carbon bonded to it is a β carbon.

- To draw the products of an elimination reaction: Remove the leaving group from the α carbon and an H from the β carbon and form a π bond.
a.

b.

c.

8.2 Alkenes are classified by the number of carbon atoms bonded to the double bond. A monosubstituted alkene has one carbon atom bonded to the double bond, a disubstituted alkene has two carbon atoms bonded to the double bond, etc.

b.

8.3 To have stereoisomers at a $\mathrm{C}=\mathrm{C}$, the two groups on each end of the double bond must be different from each other.

Chapter 8-6
8.4
a.

b. A diastereomer has a different 3-D arrangement of groups but the carbon skeleton and the double bonds must stay in the original positions.

8.5 Two definitions:

- Constitutional isomers differ in the connectivity of the atoms.
- Stereoisomers differ only in the 3-D arrangement of the atoms in space.
a.

different connectivity of atoms constitutional isomers
c.

and

different arrangement of atoms in space
stereoisomers
b.

d.
 constitutional isomers
8.6 Two rules to predict the relative stability of alkenes:
[1] Trans alkenes are generally more stable than cis alkenes.
[2] The stability of an alkene increases as the number of R groups on the $\mathrm{C}=\mathrm{C}$ increases.
a.

b.

c.

trisubstituted

more stable
disubstituted
8.7

A

B

Alkene \mathbf{A} is more stable than alkene \mathbf{B} because the double bond in \mathbf{A} is in a six-membered ring. The double bond in \mathbf{B} is in a four-membered ring, which has considerable angle strain due to the small ring size.
8.8 In an E2 mechanism, four bonds are involved in the single step. Use curved arrows to show these simultaneous actions:
[1] The base attacks a hydrogen on a β carbon.
[2] A π bond forms.
[3] The leaving group comes off.

8.9 In both cases, the rate of elimination decreases.
a.

better leaving group
b. $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{Br}$
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{Cl}+{ }^{-} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3} \longrightarrow$
8.10 As the number of R groups on the carbon with the leaving group increases, the rate of an E2 reaction increases.
a.
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$
1° alkyl halide
least reactive
b.

1° alkyl halide least reactive
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}(\mathrm{Br}) \mathrm{CH}_{3}$
2° alkyl halide intermediate reactivity

2° alkyl halide intermediate reactivity

3° alkyl halide most reactive
8.11 Use the following characteristics of an E 2 reaction to answer the questions:
[1] E2 reactions are second order and one step.
[2] More substituted halides react faster.
[3] Reactions with strong bases or better leaving groups are faster.
[4] Reactions with polar aprotic solvents are faster.

Chapter 8-8

Rate equation: rate $=\boldsymbol{k}[\mathrm{RX}][$ Base $]$
a. tripling the concentration of the alkyl halide $=$ rate triples
b. halving the concentration of the base = rate halved
c. changing the solvent from $\mathrm{CH}_{3} \mathrm{OH}$ to $\mathrm{DMSO}=$ rate increases (Polar aprotic solvent is better for E2.)
d. changing the leaving group from Γ^{-}to $\mathrm{Br}^{-}=$rate decreases (Γ^{-}is a better leaving group.)
e. changing the base from ${ }^{-} \mathrm{OH}$ to $\mathrm{H}_{2} \mathrm{O}=$ rate decreases (weaker base)
f. changing the alkyl halide from $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$ to $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHBr}=$ rate increases (More substituted halide reacts faster.)
8.12 The Zaitsev rule states: In a β-elimination reaction, the major product has the more substituted double bond.
a.

b.

 minor product

 $\begin{array}{lc}\text { tetrasubstituted } & \text { disubstituted } \\ \text { major product } & \text { minor product }\end{array}$
c.

d.

8.13 An E1 mechanism has two steps:
[1] The leaving group comes off, creating a carbocation.
[2] A base pulls off a proton from a β carbon, and a π bond forms.

8.14 The Zaitsev rule states: In a β-elimination reaction, the major product has the more substituted double bond.

8.15 Use the following characteristics of an $\mathbf{E} 1$ reaction to answer the questions:
[1] E1 reactions are first order and two steps.
[2] More substituted halides react faster.
[3] Weaker bases are preferred.
[4] Reactions with better leaving groups are faster.
[5] Reactions in polar protic solvents are faster.
Rate equation: rate $=\boldsymbol{k}[\mathrm{RX}]$. The base doesn't affect rate.
a. doubling the concentration of the alkyl halide = rate doubles
b. doubling the concentration of the base $=$ no change (Base is not in the rate equation.)
c. changing the alkyl halide from $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$ to $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}=$ rate decreases (More substituted halides react faster.)
d. changing the leaving group from Cl^{-}to $\mathrm{Br}^{-}=$rate increases (better leaving group)
e. changing the solvent from DMSO to $\mathrm{CH}_{3} \mathrm{OH}=$ rate increases (Polar protic solvent favors E1.)
8.16 Both $\mathrm{S}_{\mathrm{N}} 1$ and E 1 reactions occur by forming a carbocation. To draw the products:
[1] For the $\mathbf{S}_{\mathbf{N}} 1$ reaction, substitute the nucleophile for the leaving group.
[2] For the E1 reaction, remove a proton from a β carbon and create a new π bond.
a.

Chapter 8-10
8.17 E2 reactions occur with anti periplanar geometry. The anti periplanar arrangement uses a staggered conformation and has the H and X on opposite sides of the $C-C$ bond.

H and Br are on opposite sides $=$ anti periplanar
8.18 The E2 elimination reactions will occur in the anti periplanar orientation as drawn. To draw the product of elimination, maintain the orientation of the remaining groups around the $\mathrm{C}=\mathrm{C}$.
 in this conformation (both drawn on dashes, behind the plane).
8.19 Note: The Zaitsev products predominate in E2 elimination except when substituents on a cyclohexane ring prevent a trans diaxial arrangement of H and X .
a.

Use this conformation.
It has Cl axial and two axial H's.

two different axial H's

b.

Use this conformation It has Cl axial and one axial H .

only one axial H on a β carbon

[loss of $\mathrm{H}\left(\beta_{1}\right)+\mathrm{Cl}$]

disubstituted only product
8.20 Draw the chair conformations of cis-1-chloro-2-methylcyclohexane and its trans isomer. For E2 elimination reactions to occur, there must be a H and X trans diaxial to each other.

Two conformations of the cis isomer:

A
reacting conformation (axial Cl)
This reacting conformation has only one group axial, making it more stable and present in a higher concentration than \mathbf{B}. This makes a faster elimination reaction with the cis isomer.

Two conformations of the trans isomer:

B
reacting conformation (axial Cl)
This conformation is less stable than A, since both CH_{3} and Cl are axial.
This slows the rate of elimination
from the trans isomer.

Chapter 8-12
8.21 E2 reactions are favored by strong negatively charged bases and occur with $1^{\circ}, 2^{\circ}$, and 3° halides, with 3° being the most reactive.
E1 reactions are favored by weaker neutral bases and do not occur with 1° halides since they would have to form highly unstable carbocations.
a.

c.

b.

d. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}+{ }^{-} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3} \longrightarrow$
strong negatively
charged base
E2
8.22 Draw the alkynes that result from removal of two equivalents of HX.
a.

 $+\mathrm{HC} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{3}$
b.

d.

8.23
a.

b.

c.
 3° halide no $S_{N} \mathbf{2}$

strong base
d.

8.24

8.25 More substituted alkenes are more stable. Trans alkenes are generally more stable than cis alkenes. Order of stability:

B
least stable

C
A
most stable
8.26 The trans isomer reacts faster. During elimination, Br must be axial to give trans diaxial elimination. In the trans isomer, the more stable conformation has the bulky tert-butyl group in the more roomy equatorial position. In the cis isomer, elimination can occur only when both the tert-butyl and Br groups are axial, a conformation that is not energetically favorable.

Chapter 8-14
8.27 Translate each model to a structure and arrange H and Br to be anti periplanar.
a.

b.

8.28
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$
C. \qquad $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{3}$
c. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHCHCH}_{3}$
\qquad $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}+\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}$

d.

\qquad

8.29 To give only one product in an elimination reaction, the starting alkyl halide must have only one type of $\boldsymbol{\beta}$ carbon with H's.
a.

d.

b. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}=\mathrm{CH}_{2}$ \qquad $\stackrel{\beta}{\alpha} \stackrel{\alpha}{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2}-\mathrm{CH}_{2} \mathrm{Cl}}$
c.

e.

8.30 To have stereoisomers, the two groups on each end of the double bond must be different from each other.

b.

8.31 Use the definitions in Answer 8.5.
a.

different connectivity
constitutional isomers

stereoisomers
c.

d.

stereoisomers
8.32

a. five $s p^{3}$ stereogenic centers (four circled, one labeled)
b. Two double bonds can both be cis or trans.
c. $2^{7}=128$ stereoisomers possible
8.33 Use the rules from Answer 8.6 to rank the alkenes.

$\mathrm{CH}_{2}=\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}$	$\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCH}_{3}$
monosubstituted	disubstituted intermediate stability	trisubstituted
least stable	most stable	

8.34 A larger negative value for ΔH° means the reaction is more exothermic. Since both 1-butene and cis-2-butene form the same product (butane), these data show that 1-butene was higher in energy to begin with, since more energy is released in the hydrogenation reaction.

Chapter 8-16
8.35
a.

b.

DBU
 only product
c.

(loss of $\beta_{1} \mathrm{H}$)
major product tetrasubstituted
 (loss of $\beta_{2} \mathrm{H}$) + trisubstituted

(loss of $\beta_{3} \mathrm{H}$) disubstituted
d.

e.

 (loss of $\beta_{1} \mathrm{H}$)
major product (loss of $\beta_{2} \mathrm{H}$) disubstituted
f.

8.36 To give only one alkene as the product of elimination, the alkyl halide must have either:

- only one β carbon with a hydrogen atom
- all identical β carbons, so the resulting elimination products are identical
a.

b.

c.

8.37 Draw the products of the E 2 reaction and compare the number of C 's bonded to the $\mathrm{C}=\mathrm{C}$.

A yields a trisubstituted alkene as the major product and a disubstituted alkene as minor product. \mathbf{B} yields a disubstituted alkene as the major product and a monosubstituted alkene as minor product. Since the major and minor products formed from \mathbf{A} have more alkyl groups on the $\mathrm{C}=\mathrm{C}$ (making them more stable) than those formed from \mathbf{B}, \mathbf{A} reacts faster in an elimination reaction.

8.38

a. Mechanism:

b. Rate $=k[\mathrm{R}-\mathrm{Br}]\left[-\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right]$
[1] Solvent changed to DMF (polar aprotic) = rate increases
[2] $\left[{ }^{-} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right]$ decreased $=$ rate decreases
[3] Base changed to ${ }^{-} \mathrm{OH}=$ rate decreases (weaker base)
[4] Halide changed to $2^{\circ}=$ rate increases (More substituted RX reacts faster.)
[5] Leaving group changed to $I^{-}=$rate increases (better leaving group)
8.39

1-chloro-1-methyl-
cyclopropane

The dehydrohalogenation of an alkyl halide usually forms the more stable alkene. In this case, \mathbf{A} is more stable than \mathbf{B} even though \mathbf{A} contains a disubstituted $\mathbf{C}=\mathbf{C}$ whereas \mathbf{B} contains a trisubstituted $\mathbf{C}=\mathrm{C}$. The double bond in \mathbf{B} is part of a three-membered ring, and is less stable than \mathbf{A} because of severe angle strain around both C's of the double bond.

Chapter 8-18

8.40

a.

8.41
a.

b.
 large groups farther away. trisubstituted major product
c.

8.42 Use the rules from Answer 8.21.
a.

b.

c.

d.

e.

E2
f.

$\xrightarrow[\text { strong base }]{{ }^{-\mathrm{OH}}}$ E2
8.43 The order of reactivity is the same for both E2 and E1: $1^{\circ}<2^{\circ}<3^{\circ}$.

2° halide

3° halide

3° halide +
better leaving group

Increasing reactivity in E1 and E2

8.44

8.45

In a ten-membered ring, the cis isomer is more stable and, therefore, the preferred elimination product. The trans isomer is less stable because strain is introduced when two ends of the double bond are connected in a trans arrangement in this medium-sized ring.
8.46 With the strong base ${ }^{-} \mathrm{OCH}_{2} \mathrm{CH}_{3}$, the mechanism is E 2 , whereas with dilute base, the mechanism is E1. E2 elimination proceeds with anti periplanar arrangement of H and X . In the E1 mechanism there is no requirement for elimination to proceed with anti periplanar geometry. In this case the major product is always the most stable, more substituted alkene. Thus, \mathbf{C} is the major product under E1 conditions. (In Chapter 9, we will learn that additional elimination products may form in the E1 reaction due to carbocation rearrangement.)

A

E2

B
Since this is an E2 mechanism, dehydrohalogenation needs an anti periplanar H to form the double bond. There is only one H trans to Cl , so the disubstituted alkene B must form.

A

E1

B
disubstituted alkene
$+$

more stable

Chapter 8-20
8.47

The H's on the CH_{2} group of the β_{2} carbon are more sterically hindered than the H's on the CH_{3} group of the β_{1} carbon. Since $\mathrm{K}^{+-} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}$ is a much bulkier base than $\mathrm{Na}^{+-} \mathrm{OCH}_{2} \mathrm{CH}_{3}$, it is easier to remove the more accessible H on β_{1}, giving it a higher percentage of 1-butene.
8.48 H and Br must be anti during the E 2 elimination. Rotate if necessary to make them anti; then eliminate.
a.

b.

E2

c.

E2

8.49
a.

b.

B two axial H's

(loss of $\beta_{1} \mathrm{H}$)
major product trisubstituted

c.

(loss of $\beta_{1} \mathrm{H}$)

Chapter 8-22

8.50

a.

2-chloro-3-methylpentane
H and Cl are arranged anti in each stereoisomer, for anti periplanar elimination.

b. Two different alkenes are formed as products.
c. The products are diastereomers: Two enantiomers (\mathbf{A} and \mathbf{B}) give identical products. A and \mathbf{B} are diastereomers of \mathbf{C} and \mathbf{D}. Each pair of enantiomers gives a single alkene. Thus, diastereomers give diastereomeric products.

8.51

a.

b.

c.

d.

8.52

b.

c.

or

Alkyl Halides and Elimination Reactions 8-23
8.53

8.54 Use the "Summary chart on the four mechanisms: $\mathrm{S}_{\mathrm{N}} 1, \mathrm{~S}_{\mathrm{N}} 2$, E1, or E2" on p. 8-2 to answer the questions.
a. Both $\mathrm{S}_{\mathrm{N}} 1$ and E 1 involve carbocation intermediates.
b. Both $\mathrm{S}_{\mathrm{N}} 1$ and E 1 have two steps.
c. $\mathrm{S}_{\mathrm{N}} 1, \mathrm{~S}_{\mathrm{N}} 2$, E 1 , and E 2 all have increased reaction rates with better leaving groups.
d. Both $\mathrm{S}_{\mathrm{N}} 2$ and E 2 have increased rates when changing from $\mathrm{CH}_{3} \mathrm{OH}$ (a protic solvent) to $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}$ (an aprotic solvent).
e. In $\mathrm{S}_{\mathrm{N}} 1$ and E 1 reactions, the rate depends on only the alkyl halide concentration.
f. Both $\mathrm{S}_{\mathrm{N}} 2$ and E 2 are concerted reactions.
g. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$ and NaOH react by an $\mathrm{S}_{\mathrm{N}} 2$ mechanism.
h. Racemization occurs in $\mathrm{S}_{\mathrm{N}} 1$ reactions.
i. In $\mathrm{S}_{\mathrm{N}} 1, \mathrm{E}$, and E 2 mechanisms, 3° alkyl halides react faster than 1° or 2° halides.
j. E 2 and $\mathrm{S}_{\mathrm{N}} 2$ reactions follow second-order rate equations.

8.55

a.

b.

1° halide $\mathrm{S}_{\mathrm{N}} 2$ or E2
strong nucleophile

 N^{2}
c.

d.

e.

Chapter 8-24
f.

g.

h.

i.

j.

$8.56[1] \mathrm{NaOCOCH}_{3}$ is a good nucleophile and weak base, and substitution is favored. [3] $\mathrm{KOC}\left(\mathrm{CH}_{3}\right)_{3}$ is a strong, bulky base that reacts by E2 elimination when there is a β hydrogen in the alkyl halide.
a. $\mathrm{CH}_{3} \mathrm{Cl} \xrightarrow{[1] \mathrm{NaOCOCH}_{3}}$
$\mathrm{CH}_{3} \mathrm{OCOCH}_{3}$

c.

$[3] \mathrm{KOC}\left(\mathrm{CH}_{3}\right)_{3}$

b.

$$
\xrightarrow{[3] \mathrm{KOC}\left(\mathrm{CH}_{3}\right)_{3}}
$$

d.
 $\xrightarrow{[1] \mathrm{NaOCOCH}_{3}}$ $\circlearrowleft \mathrm{OCOCH}_{3}$

[3] $\mathrm{KOC}\left(\mathrm{CH}_{3}\right)_{3}$

a. two enantiomers:

b. The bulky tert-butyl group anchors the cyclohexane ring and occupies the more roomy equatorial position. The cis isomer has the Br atom axial, while the trans isomer has the Br atom equatorial. For dehydrohalogenation to occur on a halo cyclohexane, the halogen must be axial to afford trans diaxial elimination of H and X . The cis isomer readily reacts since the Br atom is axial. The only way for the trans isomer to react is for the six-membered ring to flip into a highly unstable conformation having both $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}$ and Br axial. Thus, the trans isomer reacts much more slowly.

cis-1-bromo-4-tert-butylcyclohexane
c. two products:
$C=$

trans-1-bromo-4-tert-butylcyclohexane
trans-1-bromo-4-tert-butycyclonex

D =

d. cis-1-Bromo-4-tert-butylcyclohexane reacts faster. With the strong nucleophile ${ }^{-} \mathrm{OCH}_{3}$, backside attack occurs by an $\mathrm{S}_{\mathrm{N}} 2$ reaction, and with the cis isomer, the nucleophile can approach from the equatorial direction, avoiding 1,3-diaxial interactions.

cis-1-bromo-4-tert-butylcyclohexan
trans-1-bromo-4-tert-butylcyclohexane
e. The bulky base ${ }^{-} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}$ favors elimination by an E 2 mechanism, affording a mixture of two enantiomers, \mathbf{A} and \mathbf{B}. The strong nucleophile ${ }^{-} \mathrm{OCH}_{3}$ favors nucleophilic substitution by an $\mathrm{S}_{\mathrm{N}} 2$ mechanism. Inversion of configuration results from backside attack of the nucleophile.

8.58

b.

Chapter 8-26
c.

E1 product
d.

$$
\mathrm{S}_{\mathrm{N}} 1, \mathrm{~S}_{\mathrm{N}} 2, \mathrm{E} 1, \mathrm{E} 2
$$

e.

 $\mathrm{S}_{\mathrm{N}} 1$ product
f.

8.59
a.

E1

E1
b.
 $\xrightarrow[\substack{\mathrm{KOH} \\ \text { s2 base }}]{\mathrm{KOH}}$
 +
 $+$

8.60
a.

No substitution occurs with a strong bulky base and a $3^{\circ} \mathrm{RX}$. The C with the leaving group is too crowded for an $S_{N} 2$ substitution to occur. Elimination occurs instead by an E2 mechanism.
b.

All elimination reactions are slow with 1° halides.
The strong nucleophile reacts by an $\mathrm{S}_{\mathrm{N}} 2$ mechanism instead.
c.

d.

The 2° halide can react by an $E 2$ or $S_{N} 2$ reaction with a negatively charged nucleophile or base. Since I^{-}is a weak base, substitution by an $S_{N} 2$ mechanism is favored.
8.61
a.

Any base (such as $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ or Cl^{-}) can be used to remove a proton to form an alkene. If Cl^{-}is used, HCl is formed as a reaction by-product. If $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ is used, $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}_{2}\right)^{+}$is formed instead.

E1
 \longrightarrow

Chapter 8-28
b.

8.62 Draw the products of each reaction with the 1° alkyl halide.
a.

$\mathrm{S}_{\mathrm{N}} 2$
c.
 E2
b.

8.63

8.65
 : $\ddot{\square}$
or

or

$+\quad \mathrm{HCl}$

Chapter 8-30
8.66 E2 elimination needs a leaving group and a hydrogen in the trans diaxial position.

Two different conformations:

This conformation has Cl's This conformation has no Cl's axial. axial, but no H's axial.
For elimination to occur, a cyclohexane must have a H and Cl in the trans diaxial arrangement. Neither conformation of this isomer has both atoms- H and Cl -axial; thus, this isomer only slowly loses HCl by elimination.
8.67

H and Br are anti periplanar.

 Elimination can occur.

 Elimination can occur here.
H (in the ring) and Br are NOT anti periplanar. Elimination cannot occur using this H . Instead elimination must occur with the H on the CH_{3} group.

$$
\xrightarrow[-\mathrm{HBr}]{\mathrm{CH}_{3} \mathrm{O}^{-}}
$$

Elimination cannot occur in the ring
because the required anti periplanar geometry is not present.
8.68
 to form the six-membered ring.
8.69
a.

b.

Both Br atoms are on the opposite sides of the $\mathrm{C}-\mathrm{C}$ bond. anti elimination
8.70 One equivalent of NaNH_{2} removes one mole of HBr in an anti periplanar fashion from each dibromide. Two modes of elimination are possible for each compound.
a.

b. \mathbf{C} and \mathbf{F} are diastereomers.
\mathbf{D} and \mathbf{E} are diastereomers.
\mathbf{C} and \mathbf{D} are constitutional isomers.
\mathbf{E} and \mathbf{F} are constitutional isomers.
loss of H from C 2
loss of $\underset{E}{\mathrm{Br}}$ from C 1

Chapter 9 Alcohols, Ethers, and Epoxides

Chapter Review

General facts about ROH, ROR, and epoxides

- All three compounds contain an O atom that is $s p^{3}$ hybridized and tetrahedral (9.2).

an ether

- All three compounds have polar $\mathrm{C}-\mathrm{O}$ bonds, but only alcohols have an $\mathrm{O}-\mathrm{H}$ bond for intermolecular hydrogen bonding (9.4).

- Alcohols and ethers do not contain a good leaving group. Nucleophilic substitution can occur only after the OH (or OR) group is converted to a better leaving group (9.7A).

- Epoxides have a leaving group located in a strained three-membered ring, making them reactive to strong nucleophiles and acids HZ that contain a nucleophilic atom Z (9.15).

A new reaction of carbocations (9.9)

- Less stable carbocations rearrange to more stable carbocations by shift of a hydrogen atom or an alkyl group. Besides rearrangement, carbocations also react with nucleophiles (7.13) and bases (8.6).

Preparation of alcohols, ethers, and epoxides (9.6)

[1] Preparation of alcohols

- The mechanism is $\mathrm{S}_{\mathrm{N}} 2$.
- The reaction works best for $\mathrm{CH}_{3} \mathrm{X}$ and $1^{\circ} \mathrm{RX}$.

Chapter 9-2
[2] Preparation of alkoxides (a Brønsted-Lowry acid-base reaction)

[3] Preparation of ethers (Williamson ether synthesis)

- The mechanism is $\mathrm{S}_{\mathrm{N}} 2$.
- The reaction works best for $\mathrm{CH}_{3} \mathrm{X}$ and $1^{\circ} \mathrm{RX}$.
[4] Preparation of epoxides (intramolecular $\mathrm{S}_{\mathrm{N}} 2$ reaction)

- A two-step reaction sequence:
[1] Removal of a proton with base forms an alkoxide.
[2] Intramolecular $\mathbf{S}_{\mathbf{N}} \mathbf{2}$ reaction forms the epoxide.

Reactions of alcohols

[1] Dehydration to form alkenes
[a] Using strong acid (9.8, 9.9)

- Order of reactivity: $\mathrm{R}_{3} \mathrm{COH}>\mathrm{R}_{2} \mathrm{CHOH}>$ $\mathrm{RCH}_{2} \mathrm{OH}$.
- The mechanism for 2° and $3^{\circ} \mathrm{ROH}$ is E1; carbocations are intermediates and rearrangements occur.
- The mechanism for $1^{\circ} \mathrm{ROH}$ is E2.
- The Zaitsev rule is followed.
[b] Using POCl_{3} and pyridine (9.10)

[2] Reaction with HX to form RX (9.11)

$$
\mathrm{R}-\mathrm{OH}+\mathrm{H}-\mathrm{X} \longrightarrow \mathrm{R}-\mathrm{X}+\mathrm{H}_{2} \mathrm{O}
$$

- Order of reactivity: $\mathrm{R}_{3} \mathrm{COH}>\mathrm{R}_{2} \mathrm{CHOH}>$ $\mathrm{RCH}_{2} \mathrm{OH}$.
- The mechanism for 2° and $3^{\circ} \mathrm{ROH}$ is $\mathrm{S}_{\mathrm{N}} 1$; carbocations are intermediates and rearrangements occur.
- The mechanism for $\mathrm{CH}_{3} \mathrm{OH}$ and $1^{\circ} \mathrm{ROH}$ is $\mathrm{S}_{\mathrm{N}} 2$.
[3] Reaction with other reagents to form RX (9.12)

- Reactions occur with $\mathrm{CH}_{3} \mathrm{OH}$ and 1° and $2^{\circ} \mathrm{ROH}$.
$\mathrm{R}-\mathrm{OH}+\mathrm{PBr}_{3} \longrightarrow \mathrm{R}-\mathrm{Br} \quad \bullet$ The reactions follow an $\mathrm{S}_{\mathrm{N}} 2$ mechanism.
[4] Reaction with tosyl chloride to form alkyl tosylates (9.13A)

- The $\mathrm{C}-\mathrm{O}$ bond is not broken so the configuration at a stereogenic center is retained.

Reactions of alkyl tosylates

Alkyl tosylates undergo either substitution or elimination depending on the reagent (9.13B).

Reactions of ethers

Only one reaction is useful: Cleavage with strong acids (9.14)

> - With CH_{3} and $1^{\circ} \mathrm{R}$ groups the mechanism is $\mathrm{S}_{\mathrm{N}} 2$.

Reactions of epoxides

Epoxide rings are opened with nucleophiles : Nu^{-}and acids HZ (9.15).

- The reaction occurs with backside attack, resulting in trans or anti products.
- With : Nu^{-}, the mechanism is $\mathrm{S}_{\mathrm{N}} 2$, and nucleophilic attack occurs at the less substituted C.
- With HZ, the mechanism is between $\mathrm{S}_{\mathrm{N}} 1$ and $\mathrm{S}_{\mathrm{N}} 2$, and attack of Z^{-}occurs at the more substituted C.

Chapter 9-4

Practice Test on Chapter Review

1. Give the IUPAC name for each of the following compounds.
a.

b.

2. Draw the organic products formed in each reaction. Draw all stereogenic centers using wedges and dashes.
a.

b.

c.

d.

e.

f.

3. What starting material is needed for the following reaction?

4. What alkoxide and alkyl halide are needed to make the following ether?

Answers to Practice Test

1.a.3-ethoxy-2methylhexane
2.
a.

d.

3.

b. 4-ethyl-7-methyl-3-octanol
e.

b.

c.

f.

4.
 $\mathrm{XCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$

Answers to Problems

9.1-Alcohols are classified as $1^{\circ}, 2^{\circ}$, or 3°, depending on the number of carbon atoms bonded to the carbon with the OH group.

- Symmetrical ethers have two identical R groups, and unsymmetrical ethers have R groups that are different.

Chapter 9-6
9.2 Use the definitions in Answer 9.1.

9.3 To name an alcohol:
[1] Find the longest chain that has the $\mathbf{O H}$ group as a substituent. Name the molecule as a derivative of that number of carbons by changing the $-\boldsymbol{e}$ ending of the alkane to the suffix -ol.
[2] Number the carbon chain to give the OH group the lower number. When the OH group is bonded to a ring, the ring is numbered beginning with the OH group, and the " 1 " is usually omitted.
[3] Apply the other rules of nomenclature to complete the name.
a. [

[2]

[3] 3,3-dimethyl-1-pentanol
b. [1]

6 carbon ring = cyclohexanol
[2]

[3] cis-2-methylcyclohexanol
c. [1]

5-ethyl
[3] 5-ethyl-6-methyl-3-nonanol
9.4 To work backwards from a name to a structure:
[1] Find the parent name and draw its structure.
[2] Add the substituents to the long chain.
a. 7,7-dimethyl-4-octanol

c. 2-tert-butyl-3-methylcyclohexanol

b. 5-methyl-4-propyl-3-heptanol

d. trans-1,2-cyclohexanediol

9.5 To name simple ethers:

[1] Name both alkyl groups bonded to the oxygen.
[2] Arrange these names alphabetically and add the word ether. For symmetrical ethers, name the alkyl group and add the prefix di.

To name ethers using the IUPAC system:
[1] Find the two alkyl groups bonded to the ether oxygen. The smaller chain becomes the substituent, named as an alkoxy group.
[2] Number the chain to give the lower number to the first substituent.
a. common name:

butyl methyl ether
b. common name:

cyclohexyl methyl ether
c. common name:

dipropyl ether

IUPAC name:

1-methoxybutane
IUPAC name:

IUPAC name:

9.6 Name the ether using the rules from Answer 9.5.

2-methoxy-2-methylpropane

9.7 Three ways to name epoxides:

[1] Epoxides are named as derivatives of oxirane, the simplest epoxide.
[2] Epoxides can be named by considering the oxygen as a substituent called an epoxy group, bonded to a hydrocarbon chain or ring. Use two numbers to designate which two atoms the oxygen is bonded to.
[3] Epoxides can be named as alkene oxides by mentally replacing the epoxide oxygen by a double bond. Name the alkene (Chapter 10) and add the word oxide.

Chapter 9-8
a.
 Three possibilities:
[1] methyloxirane
[2] 1,2-epoxypropane
[3] propene oxide
c.

Three possibilities:
1
b.

Two possibilities:
[1] 6 carbons = cyclohexane
1,2-epoxy-1-methylcyclohexane
[2] 1-methylcyclohexene oxide
9.8 Two rules for boiling point:
[1] The stronger the forces the higher the bp.
[2] Bp increases as the extent of the hydrogen bonding increases. For alcohols with the same number of carbon atoms: hydrogen bonding and bp's increase: $3^{\circ} \mathrm{ROH}<2^{\circ} \mathrm{ROH}<$ $1^{\circ} \mathrm{ROH}$.
a.

VDW
lowest bp

\uparrow
VDW hydrogen bonding
highest bp
b.

 lowest bp intermediate bp

$\stackrel{\uparrow}{1^{\circ} \mathrm{ROH}}$
$\stackrel{1^{\circ} \mathrm{ROH}}{\text { highest bp }}$
9.9 Strong nucleophiles (like $\left.{ }^{-} \mathrm{CN}\right)$ favor $\mathrm{S}_{\mathrm{N}} 2$ reactions. The use of crown ethers in nonpolar solvents increases the nucleophilicity of the anion, and this increases the rate of the $\mathrm{S}_{\mathrm{N}} 2$ reaction. The nucleophile does not appear in the rate equation for the $S_{N} 1$ reaction. Nonpolar solvents cannot solvate carbocations, so this disfavors $\mathrm{S}_{\mathrm{N}} 1$ reactions as well.
9.10 Draw the products of substitution in the following reactions by substituting OH or OR for X in the starting material.
a.

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{OH}+\mathrm{Br}^{-}$alcohol
b.
 OCH Cl^{-}unsymmetrical ether
c.

d.

9.11 Two possible routes to \mathbf{X} are shown. Path [2] with a 1° alkyl halide is preferred. Path [1] cannot occur because the leaving group would be bonded to an $s p^{2}$ hybridized C , making it an unreactive aryl halide.

$9.12 \mathbf{N a H}$ and NaNH_{2} are strong bases that will remove a proton from an alcohol, creating a nucleophile.
a.

b.

c.

d.

9.13 Dehydration follows the Zaitsev rule, so the more stable, more substituted alkene is the major product.
a.

b.

Chapter 9-10

9.14 The rate of dehydration increases as the number of R groups increases.

9.15

transition state [1]:

transition state [2]:

9.16

The initially formed 2° carbocation gives two alkenes:

9.17
a.

c.

9.18

9.19
a.

b.

$9.20-\mathrm{CH}_{3} \mathrm{OH}$ and 1° alcohols follow an $\mathrm{S}_{\mathrm{N}} 2$ mechanism, which results in inversion of configuration.

- Secondary $\left(2^{\circ}\right)$ and 3° alcohols follow an $\mathrm{S}_{\mathrm{N}} 1$ mechanism, which results in racemization at a stereogenic center.

b.

achiral starting material
achiral product
c.

 3° alcohol $=$ racemization

Chapter 9-12
9.21
a.

c.

(product formed after a $1,2-\mathrm{H}$ shift)
b.

9.22 Substitution reactions of alcohols using SOCl_{2} proceed by an $\mathrm{S}_{\mathrm{N}} 2$ mechanism. Therefore, there is inversion of configuration at a stereogenic center.

9.23 Substitution reactions of alcohols using PBr_{3} proceed by an $\mathrm{S}_{\mathrm{N}} 2$ mechanism. Therefore, there is inversion of configuration at a stereogenic center.

9.24 Stereochemistry for conversion of ROH to RX by reagent:
[1] HX—with $1^{\circ}, \mathrm{S}_{\mathrm{N}} 2$, so inversion of configuration; with 2° and $3^{\circ}, \mathrm{S}_{\mathrm{N}} 1$, so racemization.
[2] $\mathbf{S O C l}_{2}-\mathrm{S}_{\mathrm{N}} 2$, so inversion of configuration.
[3] $\mathrm{PBr}_{3}-\mathrm{S}_{\mathrm{N}} 2$, so inversion of configuration.
a.

c.

b.

3° alcohol, $\mathrm{S}_{\mathrm{N}} 1=$ racemization
9.25 To do a two-step synthesis with this starting material:
[1] Convert the OH group into a good leaving group (by using either PBr_{3} or SOCl_{2}).
[2] Add the nucleophile for the $\mathrm{S}_{\mathrm{N}} 2$ reaction.

Alcohols, Ethers, and Epoxides 9-13

9.26
a.

b.

9.27
a.

b.
 E2 1° tosylate strong bulky
c.

2° tosylate base
9.28

9.29 These reagents can be classified as:
[1] $\mathrm{SOCl}_{2}, \mathrm{PBr}_{3}, \mathrm{HCl}$, and HBr replace OH with X by a substitution reaction.
[2] Tosyl chloride (TsCl) makes OH a better leaving group by converting it to OTs.
[3] Strong acids $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ and POCl_{3} (pyridine) result in elimination by dehydration.

Chapter 9-14
a.

d.

b.

e.

c.

f.

9.30

c.

9.31 Ether cleavage can occur by either an $\mathrm{S}_{\mathrm{N}} 1$ or $\mathrm{S}_{\mathrm{N}} 2$ mechanism, but neither mechanism can occur when the ether O atom is bonded to an aromatic ring. An $\mathrm{S}_{\mathrm{N}} 1$ reaction would require formation of a highly unstable carbocation on a benzene ring, a process that does not occur. An $\mathrm{S}_{\mathrm{N}} 2$ reaction would require backside attack through the plane of the aromatic ring, which is also not possible. Thus, cleavage of the $\mathrm{Ph}-\mathrm{OCH}_{3}$ bond does not occur.

9.32 Two rules for reaction of an epoxide:
[1] Nucleophiles attack from the back side of the epoxide.
[2] Negatively charged nucleophiles attack at the less substituted carbon.
a.

Attack here: less substituted C backside attack
b.

Attack here:
less substituted C
backside attack
9.33 In both isomers, ${ }^{-} \mathrm{OH}$ attacks from the back side at either $\mathrm{C}-\mathrm{O}$ bond.
cis-2,3-dimethyloxirane

9.34 Remember the difference between negatively charged nucleophiles and neutral nucleophiles:

- Negatively charged nucleophiles attack first, followed by protonation, and the nucleophile attacks at the less substituted carbon.
- Neutral nucleophiles have protonation first, followed by nucleophilic attack at the more substituted carbon.
But, trans or anti products are always formed regardless of the nucleophile.
a.

b.

negatively charged nucleophile: attack at less substituted C
c.

 attack at more substituted C
d.

Chapter 9-16
9.35
a.

c. $\left\{\begin{array}{l}1 / 2 \\ 2\end{array} \begin{array}{c}\text { 1,2-epoxy-1-ethylcyclopentane } \\ \text { or } \\ \text { 1-ethylcyclopentene oxide }\end{array}\right.$
b.
 ethyl isobutyl ether
or
1-ethoxy-2-methylpropane
9.36
a. $(1 R, 2 R)$-2-isobutylcyclopentanol
b. 2° alcohol

A
c. stereoisomer

(1R,2S)-2-isobutylcyclopentanol

A
[2]

[4]

d. constitutional isomer

(1S,3S)-3-isobutylcyclopentanol
[5]

[6]

e. constitutional isomer with an ether

butoxycyclopentane
9.37
a.

2° alcohol $\mathrm{S}_{\mathrm{N}} 1=$ racemization
b.
 $\mathrm{S}_{\mathrm{N}} 2=$ inversion.
c.

2° alcohol $\mathrm{S}_{\mathrm{N}} 1=$ racemization

Alcohols, Ethers, and Epoxides 9-17
d.

SOCl_{2} follows $\mathbf{S}_{\mathrm{N}} \mathbf{2}=$ inversion.
9.38 Draw the structure of each alcohol, using the definitions in Answer 9.1.
a.

2°

3°
b.

9.39 Use the directions from Answer 9.3.
a. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
[1]

$\stackrel{\mathrm{H}}{\mathrm{C}}$
$\mathrm{CH}_{3}-\mathrm{C}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
5 carbons $=$ pentanol

 5 carbons = pentanol
$\left.\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{3}$
b. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{3}$

7 carbons $=$ heptanol
[2]

c.

8 carbons $=$ octanol
[2]

,
[3] 4-methyl-1-pentanol
[3] 4-ethyl-5-methyl-3-octanol
d.
[1]

cyclohexanediol
[2]

${ }^{\text {[1] }}$

[2]

4 carbons = butanediol
f.
[1]

7 carbons = heptanetriol
g.
[1]

[2]

Chapter 9-18
9.40 Use the rules from Answers 9.5 and 9.7.
a.

dicyclohexyl ether

9.41 Use the directions from Answer 9.4.

c. 2,3,3-trimethyl-2-butanol

d. 6-sec-butyl-7,7-diethyl-4-decanol

e. 3-chloro-1,2-propanediol

c.

1,2-epoxy-2-methylhexane or 2-butyl-2-methyloxirane or 2-methylhexene oxide
d.

f. diisobutyl ether

g. 1,2-epoxy-1,3,3-trimethyIcyclohexane

h. 1-ethoxy-3-ethylheptane

i. $(2 R, 3 S)$-3-isopropyl-2-hexanol

j. (2S)-2-ethoxy-1,1-dimethylcyclopentane

9.42

Eight constitutional isomers of molecular formula $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$ containing an OH group:

9.43 Use the boiling point rules from Answer 9.8.
a.

lowest bp

$\xrightarrow[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}]{\substack{\text { 2 alcohol } \\ \text { hydrogen bonding } \\ \text { intermediate bp }}}$

hydrogen bonding
highest bp
b.

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ one OH group
$\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
two OH groups
lowest water solubility intermediate water solubility highest water solubility
9.44 Melting points depend on intermolecular forces and symmetry. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{OH}$ has a lower melting point than $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ because branching decreases surface area and makes $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{OH}$ less symmetrical so it packs less well. Although $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$ has the most branching and least surface area, it is the most symmetrical, so it packs best in a crystalline lattice, giving it the highest melting point.

$-108^{\circ} \mathrm{C}$
lowest melting point

$-90^{\circ} \mathrm{C}$
intermediate melting point

$26^{\circ} \mathrm{C}$
highest melting point
9.45 Stronger intermolecular forces increase boiling point. All of the compounds can hydrogen bond, but both diols have more opportunity for hydrogen bonding since they have two OH groups, making their bp's higher than the bp of 1-butanol. 1,2-Propanediol can also intramolecularly hydrogen bond. Intramolecular hydrogen bonding decreases the amount of intermolecular hydrogen bonding, so the bp of 1,2-propanediol is somewhat lower.

Chapter 9-20
9.46
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O}$
b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow{\mathrm{NaH}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}^{-} \mathrm{Na}^{+}+\mathrm{H}_{2}$
c. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow[\mathrm{ZnCl}_{2}]{\mathrm{HCl}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}$
d. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow{\mathrm{HBr}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{H}_{2} \mathrm{O}$
e. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow[\text { pyridine }]{\mathrm{SOCl}_{2}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$
f. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow{\mathrm{PBr}_{3}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$
g. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow[\text { pyridine }]{\mathrm{TsCl}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OT}$
h. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow{[1] \mathrm{NaH}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}^{-} \mathrm{Na}^{+} \xrightarrow{[2] \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$
i. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow{[1] \mathrm{TsCl}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OT} \xrightarrow{[2] \mathrm{NaSH}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SH}$
9.47
a.

b.

f.

c.

g.

d.

h.

9.48 Dehydration follows the Zaitsev rule, so the more stable, more substituted alkene is the major product.
a.

b.

c.

disubstituted
d.

9.49 The most stable alkene is the major product.

9.50 OTs is a good leaving group and will easily be replaced by a nucleophile. Draw the products by substituting the nucleophile in the reagent for OTs in the starting material.
a.

b.

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{OCH}_{2} \mathrm{CH}_{3}+\mathrm{Na}^{+}{ }^{-} \mathrm{OTs}$
c.

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{OH}+\mathrm{Na}^{+}-\mathrm{OT}$
d.

9.51

a.

2° Alcohol will undergo $S_{N} 1$. racemization
b.

1° Alcohol will undergo $S_{N} 2$.

$$
\xrightarrow[\text { pyridine }]{\mathrm{SOCl}_{2}}
$$

SOCl_{2} always implies $\mathrm{S}_{\mathrm{N}} 2$.
d.

Chapter 9-22
9.52

Routes (a) and (c) given identical products, labeled \mathbf{B} and \mathbf{F}.
9.53 Acid-catalyzed dehydration follows an E1 mechanism for 2° and $3^{\circ} \mathrm{ROH}$ with an added step to make a good leaving group. The three steps are:
[1] Protonate the oxygen to make a good leaving group.
[2] Break the $\mathrm{C}-\mathrm{O}$ bond to form a carbocation.
[3] Remove a β hydrogen to form the π bond.

9.54 With POCl_{3} (pyridine), elimination occurs by an E 2 mechanism. Since only one carbon has a β hydrogen, only one product is formed. With $\mathrm{H}_{2} \mathrm{SO}_{4}$, the mechanism of elimination is E1. A 2° carbocation rearranges to a 3° carbocation, which has three pathways for elimination.

$+\mathrm{Cl}^{-}$

3° carbocation

$+\mathrm{H}_{2} \mathrm{SO}_{4}$

$+\mathrm{H}_{2} \mathrm{SO}_{4}$

$+\mathrm{H}_{2} \mathrm{SO}_{4}$
9.55 To draw the mechanism:
[1] Protonate the oxygen to make a good leaving group.
[2] Break the $\mathrm{C}-\mathrm{O}$ bond to form a carbocation.
[3] Look for possible rearrangements to make a more stable carbocation.
[4] Remove a β hydrogen to form the π bond.
Dark and light circles are meant to show where the carbons in the starting material appear in the product.

Chapter 9-24
9.56

3-methyl-2-butanol

Br The 2° alcohol reacts by an $\mathrm{S}_{\mathrm{N}} 1$ mechanism to form a carbocation that rearranges.

2-methyl-1-propanol

The 1° alcohol reacts with HBr by an $\mathrm{S}_{\mathrm{N}} 2$ mechanism. no carbocation intermediate $=$ no rearrangement possible
9.57

9.58

Step [1] for all products: Formation of a good leaving group

Formation of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$:

Formation of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$:

Alcohols, Ethers, and Epoxides 9-25

Ether formation (from the protonated alcohol):

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\ddot{O}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}
$$

9.59

9.60

9.61
a.

 preferred path

less hindered RX preferred path

Chapter 9-26

Neither path preferred.
9.62 A tertiary halide is too hindered and an aryl halide too unreactive to undergo a Williamson ether synthesis.

Two possible sets of starting materials:

9.63
a. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \xrightarrow[\text { (2 equiv) }]{\mathrm{HBr}}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}+\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}$
c.

b.

9.64
a. \qquad

\qquad $\rightarrow{ }^{H}$

b.

\qquad

[^0]Alcohols, Ethers, and Epoxides 9-27

9.66

e.

c.

f.

9.67

9.68
a.

The $2 \mathrm{CH}_{3}$ groups are anti in the starting material, making them trans in the product.
$\mathrm{Na}^{+} \mathrm{H}$:
$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$
b.

The $2 \mathrm{CH}_{3}$ groups are gauche in the starting material, making them cis in the product.
c.

Chapter 9-28
9.69 First, use the names to draw the structures of the starting material and both products. Because the product has two OH groups, one OH must come from the epoxide oxygen, and one must come from the nucleophile, either ${ }^{-} \mathrm{OH}$ or $\mathrm{H}_{2} \mathrm{O}$.

9.70

9.71
a.

b.

Keep the stereochemistry at the stereogenic center [*] the same here since no bond is broken to it.
c.

identical
d.

e.

f.

g.

h.

i.

j.

9.72
a.

b.

c.

d.

9.73
a.

b.

c.

d.

Make OH a good leaving group (use TsCl); then add ${ }^{-} \mathrm{CN}$.

Chapter 9-30
9.74

9.75

9.76 With the cis isomer, ${ }^{-} \mathrm{OH}$ acts as a nucleophile to displace Br^{-}from the back side, forming a trans diol (A). With the trans isomer, the two functional groups are arranged in a manner that allows an intramolecular $\mathrm{S}_{\mathrm{N}} 2$. ${ }^{-} \mathrm{OH}$ removes a proton to form an alkoxide, which can then displace Br^{-}by intramolecular backside attack to afford an ether (\mathbf{B}). Such a reaction is not possible with the cis isomer because the nucleophile and leaving group are on the same side.

Alcohols, Ethers, and Epoxides 9-31
9.77 If the base is not bulky, it can react as a nucleophile and open the epoxide ring. The bulky base cannot act as a nucleophile, and will only remove the proton.

9.78 First form the 2° carbocation. Then lose a proton to form each product.

at this step

$+\mathrm{H}_{3} \ddot{\mathrm{O}}+$

9.79

Chapter 9-32
9.80
a.

b. Other elimination products can form from carbocations \mathbf{X} and \mathbf{Y}.

9.81
a.

Alcohols, Ethers, and Epoxides 9-33
b. Two different carbocations can form. The carbocation with the $(+)$ charge adjacent to the benzene rings (\mathbf{A}) is more stable, so it is preferred.

9.82

Chapter 9-34
9.83 The conversion of \mathbf{X} to \mathbf{Y} requires two operations. \mathbf{X} contains both a nucleophile $\left(\mathrm{NH}_{2}\right)$ and a leaving group $\left(\mathrm{OSO}_{2} \mathrm{CH}_{3}\right)$, so an intramolecular $\mathrm{S}_{\mathrm{N}} 2$ reaction forms an aziridine. Since the aziridine is strained, the amine nucleophile $\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{NH}_{2}\right)$ opens the ring by backside attack, resulting in the trans stereochemistry of the two N's on the six-membered ring.

Chapter 10 Alkenes

Chapter Review

General facts about alkenes

- Alkenes contain a carbon-carbon double bond consisting of a stronger σ bond and a weaker π bond. Each carbon is $s p^{2}$ hybridized and trigonal planar (10.1).
- Alkenes are named using the suffix -ene (10.3).
- Alkenes with different groups on each end of the double bond exist as a pair of diastereomers, identified by the prefixes E and $Z(10.3 \mathrm{~B})$.

E isomer
(2E)-3-methyl-2-pentene

Two higher priority groups on the same side

Z isomer
(2Z)-3-methyl-2-pentene

- Alkenes have weak intermolecular forces, giving them low mp's and bp's, and making them water insoluble. A cis alkene is more polar than a trans alkene, giving it a slightly higher boiling point (10.4).

- Since a π bond is electron rich and much weaker than a σ bond, alkenes undergo addition reactions with electrophiles (10.8).

Stereochemistry of alkene addition reactions (10.8)

A reagent XY adds to a double bond in one of three different ways:

- Syn addition - X and Y add from the same side.

- Syn addition occurs in hydroboration.
- Anti addition - X and Y add from opposite sides.

- Anti addition occurs in halogenation and halohydrin formation.
- Both syn and anti addition occur when carbocations are intermediates.

Chapter 10-2

Addition reactions of alkenes

[1] Hydrohalogenation-Addition of $\mathrm{HX}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})(10.9-10.11)$

- The mechanism has two steps.

- Carbocations are formed as intermediates.
- Carbocation rearrangements are possible.
- Markovnikov's rule is followed. H bonds to the less substituted C to form the more stable carbocation.
- Syn and anti addition occur.
[2] Hydration and related reactions-Addition of $\mathrm{H}_{2} \mathrm{O}$ or ROH (10.12)
For both reactions:

- The mechanism has three steps.
- Carbocations are formed as intermediates.
- Carbocation rearrangements are possible.
- Markovnikov's rule is followed. H bonds to the less substituted C to form the more
 stable carbocation.
- Syn and anti addition occur.
[3] Halogenation-Addition of $\mathrm{X}_{2}(\mathrm{X}=\mathrm{Cl}$ or Br$)(10.13-10.14)$
- The mechanism has two steps.

- Bridged halonium ions are formed as intermediates.
- No rearrangements occur.
- Anti addition occurs.
[4] Halohydrin formation-Addition of OH and $\mathrm{X}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})(10.15)$
- The mechanism has three steps.

- Bridged halonium ions are formed as intermediates.
- No rearrangements occur.
- X bonds to the less substituted C.
- Anti addition occurs.
- NBS in DMSO and $\mathrm{H}_{2} \mathrm{O}$ adds Br and OH in the same fashion.
[5] Hydroboration-oxidation-Addition of $\mathrm{H}_{2} \mathrm{O}$ (10.16)
- Hydroboration has a one-step mechanism.
$\mathrm{RCH}=\mathrm{CH}_{2} \xrightarrow{\text { [2] } \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{HO}^{-}} \xrightarrow{\begin{array}{c}\mathrm{R}-\mathrm{CH}-\mathrm{CH}_{2} \\ \mathrm{H} \\ \mathrm{H} \\ \text { alcohol }\end{array}}$
- No rearrangements occur.
- OH bonds to the less substituted C.
- Syn addition of $\mathrm{H}_{2} \mathrm{O}$ results.

Practice Test on Chapter Review

1. Give the IUPAC name for the following compounds.
a.

b.

2. Draw the organic products formed in the following reactions. Draw all stereogenic centers using wedges and dashes.
a.

b.

c.

d.

3. Fill in the table with the stereochemistry observed in the reaction of an alkene with each reagent. Choose from syn, anti, or both syn and anti.

Reagent	Stereochemistry
a. $[1] 9-\mathrm{BBN} ;[2] \mathrm{H}_{2} \mathrm{O}_{2},-\mathrm{OH}$	
b. $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{SO}_{4}$	
c. $\mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{O}$	
d. HI	
e. Br_{2}	

4. a. In which of the following reactions are carbocation rearrangements are observed?
5. hydrohalogenation
6. halohydrin formation
7. hydroboration-oxidation
8. Carbocation rearrangements are observed in reactions (1) and (2).
9. Carbocation rearrangements are observed in reactions (1), (2), and (3).
b. Which of the following products are formed when HCl is added to 3-methyl-1-pentene?
10. 2-chloro-2-methylpentane
11. 3-chloro-3-methylpentane
12. 1-chloro-3-methylpentane
13. Both (1) and (2) are formed.
14. Products (1), (2), and (3) are all formed.

Answers to Practice Test

1. a. (3E)-4-ethyl-2,5- 2. dimethyl-3-nonene
b. (3E)-4-isopropyl-2-methyl-3-octene
a.

b.

c.

d.

2. a. syn
b. both
c. anti
d. both
e. anti
3. a. 1
b. 2

Answers to Problems

10.1

Six alkenes of molecular formula $\mathrm{C}_{5} \mathrm{H}_{10}$:

10.2 To determine the number of degrees of unsaturation:

[1] Calculate the maximum number of H's $(2 n+2)$.
[2] Subtract the actual number of H's from the maximum number.
[3] Divide by two.
a. $\mathrm{C}_{2} \mathrm{H}_{2}$
[1] maximum number of $\mathrm{H} ' \mathrm{~s}=2 n+2=2(2)+2=6$
[2] subtract actual from maximum $=6-2=4$
[3] divide by two $=4 / 2=2$ degrees of unsaturation
b. $\mathrm{C}_{6} \mathrm{H}_{6}$
[1] maximum number of H 's $=2 n+2=2(6)+2=14$
[2] subtract actual from maximum $=14-6=8$
[3] divide by two $=8 / 2=4$ degrees of unsaturation
c. $\mathrm{C}_{8} \mathrm{H}_{18}$
[1] maximum number of H 's $=2 n+2=2(8)+2=18$
[2] subtract actual from maximum $=18-18=0$
[3] divide by two $=0 / 2=\mathbf{0}$ degrees of unsaturation
d. $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}$

Ignore the O .
[1] maximum number of H 's $=2 n+2=2(7)+2=16$
[2] subtract actual from maximum $=16-8=8$
[3] divide by two $=8 / 2=4$ degrees of unsaturation
e. $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{Br}$

Because of Br , add one more $\mathrm{H}(11+1 \mathrm{H}=12 \mathrm{H}$'s $)$.
[1] maximum number of H 's $=2 n+2=2(7)+2=16$
[2] subtract actual from maximum $=16-12=4$
[3] divide by two $=4 / 2=2$ degrees of unsaturation
f. $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}$

Because of N , subtract one $\mathrm{H}(9-1 \mathrm{H}=8 \mathrm{H}$'s $)$.
[1] maximum number of H 's $=2 n+2=2(5)+2=12$
[2] subtract actual from maximum $=12-8=4$
[3] divide by two $=4 / 2=\mathbf{2}$ degrees of unsaturation
10.3

One possibility for $\mathrm{C}_{6} \mathrm{H}_{10}$:
a. a compound that has 2π bonds

c. a compound with 2 rings

b. a compound that has 1 ring and 1π bond

d. a compound with 1 triple bond

10.4 To name an alkene:

[1] Find the longest chain that contains the double bond. Change the ending from -ane to -ene.
[2] Number the chain to give the double bond the lower number. The alkene is named by the first number.
[3] Apply all other rules of nomenclature.

To name a cycloalkene:

[1] When a double bond is located in a ring, it is always located between C 1 and C 2 . Omit the " 1 " in the name. Change the ending from -ane to -ene.
[2] Number the ring clockwise or counterclockwise to give the first substituent the lower number.
[3] Apply all other rules of nomenclature.
a. [1] $\mathrm{CH}_{2}=\mathrm{CHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$ 5 C chain with double bond pentene
[2] $\mathrm{CH}_{2} \underset{\uparrow}{\text { 1-pentene }} \mathrm{CHCHCH}_{2} \mathrm{CH}_{3}$

[3] 3-methyl-1-pentene
b. [1] $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

7 C chain with double bond
heptene
[2]

Chapter 10-6
c. [1]

5 C chain with double bond pentene

1-pentene
[2]

3,4-dimethyl

[2]

5-tert-buty
[3] 2-ethyl-4-methyl-1-pentene
[3] 3,4-dimethylcyclopentene
[3] 5-tert-butyl-1-methylcyclohexene
e. [1]

6 C ring with a double bond cyclohexene
d. [1]

5 C ring with a double bond cyclopentene
10.5 Use the rules from Answer 10.4 to name the compounds. Enols are named to give the OH the lower number. Compounds with two $\mathrm{C}=\mathrm{C}$'s are named with the suffix -adiene.
a.

6 Chain with double bond
[2]

[3] 4-ethyl-3-hexen-1-ol
[2]

[3] 5-ethyl-6-methyl-7-octen-4-ol
b.

8 C chain with double bond octene
[1]
c.

7 C chain with two double bonds heptadiene
10.6 To label an alkene as E or Z :
[1] Assign priorities to the two substituents on each end using the rules for R, S nomenclature.
[2] Assign \boldsymbol{E} or \boldsymbol{Z} depending on the location of the two higher priority groups.

- The \boldsymbol{E} prefix is used when the two higher priority groups are on opposite sides.
- The \boldsymbol{Z} prefix is used when the two higher priority groups are on the same side of the double bond.

10.7

10.8 To work backwards from a name to a structure:
[1] Find the parent name and functional group and draw, remembering that the double bond is between C 1 and C 2 for cycloalkenes.
[2] Add the substituents to the appropriate carbons.

10.9 Draw all of the stereoisomers and then use the rules from Answer 10.6 to name each diene.

(2E,4E)-2,4-hexadiene

(2E,4Z)-2,4-hexadiene

(2Z,4Z)-2,4-hexadiene

Chapter 10-8
10.10 To rank the isomers by increasing boiling point:

Look for polarity differences: small net dipoles make an alkene more polar, giving it a higher boiling point than an alkene with no net dipole. Cis isomers have a higher boiling point than their trans isomers.

All dipoles cancel. smallest surface area no net dipole lowest bp

Two dipoles cancel. no net dipole trans isomer intermediate bp

Two dipoles reinforce. net dipole
cis isomer highest bp
10.11 Increasing number of double bonds $=$ decreasing melting point.

10.12
a.

b.

10.13 To draw the products of an addition reaction:
[1] Locate the two bonds that will be broken in the reaction. Always break the π bond.
[2] Draw the product by forming two new σ bonds.
a.

c.

b.

10.14 Addition reactions of HX occur in two steps:

[1] The double bond attacks the H atom of HX to form a carbocation.
[2] X^{-}attacks the carbocation to form a $\mathrm{C}-\mathrm{X}$ bond.

10.15 Addition to alkenes follows Markovnikov's rule: When HX adds to an unsymmetrical alkene, the H bonds to the C that has more H's to begin with.

no H's

 Cl adds here.a.

H adds here.

2 H's
H adds here.
c.

10.16 To determine which alkene will react faster, draw the carbocation that forms in the ratedetermining step. The more stable, more substituted the carbocation, the lower the E_{a} to form it and the faster the reaction.

10.17 Look for rearrangements of a carbocation intermediate to explain these results.

Chapter 10-10
10.18 Addition of HX to alkenes involves the formation of carbocation intermediates. Rearrangement of the carbocation will occur if it forms a more stable carbocation.

no rearrangement

10.19 To draw the products, remember that addition of HX proceeds via a carbocation intermediate.

10.20 The product of syn addition will have H and Cl both up or down (both on wedges or both dashes), while the product of anti addition will have one up and one down (one wedge, one dash).

10.21
a.

b.
 a 3° carbocation.
c.
 a 2° carbocation.
10.22

10.23 Halogenation of an alkene adds two elements of X in an anti fashion.
a.

b.

10.24 To draw the products of halogenation of an alkene, remember that the halogen adds to both ends of the double bond but only anti addition occurs.
a.

enantiomers
b.

achiral meso compound

Chapter 10-12
c. $\mathrm{CH}_{3}-\square$

10.25 The two steps in the mechanism for the halogenation of an alkene are:
[1] Addition of X^{+}to the alkene to form a bridged halonium ion
[2] Nucleophilic attack by X^{-}
trans-2-butene

All four compounds are identical-an achiral meso compound.
10.26 Halohydrin formation adds the elements of X and OH across the double bond in an anti fashion. The reaction is regioselective so X ends up on the carbon that had more H's to begin with.
a.

$+$

b.

Cl bonds to the carbon with more H's to begin with.
10.27

b. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}$:

c. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{P}$:
$\begin{array}{ll}\mathrm{H} & \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \\ -\mathrm{B} \\ 1 \\ 1 \\ \mathrm{P}^{+}+\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \\ \mathrm{H} & \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\end{array}$
10.28 In hydroboration the boron atom is the electrophile and becomes bonded to the carbon atom that had more H's to begin with.
a.

c.

C with more H's.
B will add here.
b.

B will add
10.29 The hydroboration-oxidation reaction occurs in two steps:
[1] Syn addition of BH_{3}, with the boron on the less substituted carbon atom
[2] OH replaces the BH_{2} with retention of configuration.
a.

b.

c. $\mathrm{CH}_{3}-\longrightarrow \mathrm{CH}_{3} \xrightarrow{\mathrm{BH}_{3}}$

10.30 Remember that hydroboration results in addition of OH on the less substituted C .
a.

c.
 \longleftarrow

b.

(E or Z isomer can be used.)
10.31
a.

Hydration places the OH on the more substituted carbon.

Hydroboration-oxidation places the OH on the less substituted carbon.
b.

Hydration places the OH on the more substituted carbon.

Hydroboration-oxidation places the OH on the less substituted carbon.
c.

Hydration places the OH on the more substituted carbon.

Hydroboration-oxidation places the OH on the less substituted carbon.
10.32 There are always two steps in this kind of question:
[1] Identify the functional group and decide what types of reactions it undergoes (e.g., substitution, elimination, or addition).
[2] Look at the reagent and determine if it is an electrophile, nucleophile, acid, or base.

nucleophile and base
b.

2° alkyl halide:
substitution and elimination

$+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{3}$ (cis and trans)
10.33 To devise a synthesis:
[1] Look at the starting material and decide what reactions it can undergo.
[2] Look at the product and decide what reactions could make it.

10.34 Convert each ball-and-stick model to a skeletal structure and then name the molecule.

6 C chain with a $\mathrm{C}=\mathrm{C} \longrightarrow$ hexene
$\mathrm{C}=\mathrm{C}$ at $\mathrm{C} 2 \longrightarrow$ 2-hexene
$2 \mathrm{CH}_{3}$'s at C 3 and C 5
two higher priority groups on opposite sides $\longrightarrow E$ isomer
Answer: (2E)-3,5-dimethyl-2-hexene
b.

5 C ring with a $\mathrm{C}=\mathrm{C} \longrightarrow$ cyclopentene
sec-butyl at C1
methyl at C2
Answer: 1-sec-butyl-2-methylcyclopentene
10.35
a.

b. Add $\mathrm{H}_{2} \mathrm{O}$ in a Markovnikov fashion to form two products.

H

\bar{H}
$+$

10.36

10.37 Use the directions from Answer 10.2 to calculate degrees of unsaturation.
a. $\mathrm{C}_{3} \mathrm{H}_{4}$
[1] maximum number of H 's $=2 n+2=2(3)+2=8$
[2] subtract actual from maximum $=8-4=4$
[3] divide by $2=4 / 2=2$ degrees of unsaturation
b. $\mathrm{C}_{6} \mathrm{H}_{8}$
[1] maximum number of H 's $=2 n+2=2(6)+2=14$
[2] subtract actual from maximum $=14-8=6$
[3] divide by $2=6 / 2=3$ degrees of unsaturation
c. $\mathrm{C}_{40} \mathrm{H}_{56}$
[1] maximum number of H 's $=2 n+2=2(40)+2=82$
[2] subtract actual from maximum $=82-56=26$
[3] divide by $2=26 / 2=13$ degrees of unsaturation
d. $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}$

Ignore the O .
[1] maximum number of $\mathrm{H} ' \mathrm{~s}=2 n+2=2(8)+2=18$
[2] subtract actual from maximum $=18-8=10$
[3] divide by $2=10 / 2=5$ degrees of unsaturation
e. $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}$

Ignore both O's.
[1] maximum number of $\mathrm{H} ' \mathrm{~s}=2 n+2=2(10)+2=22$
[2] subtract actual from maximum $=22-16=6$
[3] divide by $2=6 / 2=3$ degrees of unsaturation
f. $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{Br}$

Because of Br , add one $\mathrm{H}(9+1=10 \mathrm{H}$'s).
[1] maximum number of $\mathrm{H} ' \mathrm{~s}=2 n+2=2(8)+2=18$
[2] subtract actual from maximum $=18-10=8$
[3] divide by $2=8 / 2=4$ degrees of unsaturation
g. $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{ClO}$

Ignore the O ; count Cl as one more $\mathrm{H}(9+1=10 \mathrm{H}$'s).
[1] maximum number of H 's $=2 n+2=2(8)+2=18$
[2] subtract actual from maximum $=18-10=8$
[3] divide by $2=8 / 2=4$ degrees of unsaturation
h. $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{Br}$

Because of Br , add one $\mathrm{H}(9+1=10 \mathrm{H} \mathrm{s})$.
[1] maximum number of $\mathrm{H}^{\prime} \mathrm{s}=2 n+2=2(7)+2=16$
[2] subtract actual from maximum $=16-10=6$
[3] divide by $2=6 / 2=3$ degrees of unsaturation
i. $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}$

Because of N , subtract one $\mathrm{H}(11-1=10 \mathrm{H}$'s).
[1] maximum number of H 's $=2 n+2=2(7)+2=16$
[2] subtract actual from maximum $=16-10=6$
[3] divide by $2=6 / 2=3$ degrees of unsaturation
j. $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{BrN}$

Because of Br , add one H , but subtract one for N ($8+1-1=8$ H's).
[1] maximum number of $\mathrm{H}^{\prime} \mathrm{s}=2 n+2=2(4)+2=10$
[2] subtract actual from maximum $=10-8=2$
[3] divide by $2=2 / 2=1$ degree of unsaturation
10.38 First determine the number of degrees of unsaturation in the compound. Then decide which combinations of rings and π bonds could exist.
$\mathrm{C}_{10} \mathrm{H}_{14}$
[1] maximum number of $\mathrm{H}^{\prime} \mathrm{s}=2 n+2=2(10)+2=22$
[2] subtract actual from maximum $=22-14=8$
[3] divide by two $=8 / 2=4$ degrees of unsaturation
possibilities:
4π bonds
3π bonds +1 ring
2π bonds +2 rings
1π bond +3 rings
4 rings
10.39 The statement is incorrect because when naming isomers with more than two groups on a double bond, one must use an E, Z label, rather than a cis, trans label.

enclomiphene E isomer

zuclomiphene
Z isomer
10.40 Name the alkenes using the rules in Answers 10.4 and 10.6.
a. $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$ 6 C chain with a double bond $=$ hexene

4-methyl-1-hexene
b.

5-ethyl-2-methyl-2-octene

8 C chain with a double bond $=$ octene

2-isopropyl
c.

5 C chain with a double bond $=$ pentene

2-isopropyl-4-methyl-1-pentene
d.

6 C ring with a double bond $=$ cyclohexene

-isopropyl
e.

7 C chain with a double bond = heptene

10.41 Use the directions from Answer 10.8.

Chapter 10-18

Higher priority groups on the same side = cis.
f. cis-3,4-dimethylcyclopentene

5 carbon ring

g. trans-2-heptene

7 carbons
 opposite sides $=$ trans.
h. 1-isopropyl-4-propylcyclohexene

10.42
a.

A

B

(2Z,4S)-4-methyl-2-nonene

C

D
b. \mathbf{A} and \mathbf{B} are enantiomers. \mathbf{C} and \mathbf{D} are enantiomers.
c. Pairs of diastereomers: A and C, A and D, B and C, B and D.

10.43

a.

(1E,4R)-1,4-dimethylcyclodecene
b.

(1E,4S)-1,4-dimethylcyclodecene enantiomer
c.

(1Z,4R)-1,4-dimethylcyclodecene diastereomer
10.44 Name the alkene from which the epoxide can be derived and add the word oxide.
a.

1-ethylcyclohexene oxide
b.

c.

d.

10.45
a. 2-butyl-3-methyl-1-pentene

As written, this is the parent chain, but there is another longer chain containing the double bond.

new name:
2-sec-butyl-1-hexene
b. (Z)-2-methyl-2-hexene

new name:
2-methyl-2-hexene
Two groups on one end of the $\mathrm{C}=\mathrm{C}$ are the same ($2 \mathrm{CH}_{3}$'s $)$, so no E and Z isomers are possible.
c. (E)-1-isopropyl-1-butene

As written, this is the parent chain, but there is another longer chain containing the double bond.
d. 5-methylcyclohexene

As written the methyl is at C5. Re-number to put it at C4.
e. 4-isobutyl-2-methylcylohexene

new name:
4-methylcyclohexene
 to put it at C 1 .

new name: 5-isobutyl-1-methylcyclohexene

Chapter 10-20
f. 1-sec-butyl-2-cyclopentene

This has the double bond between C2 and C3. Cycloalkenes must have the double bond between C 1 and C 2 . Re-number.
g. 1-cyclohexen-4-ol

The numbering is incorrect. When a compound contains both a double bond and an OH group, number the C skeleton to give the OH group the lower number.
h. 3-ethyl-3-octen-5-ol

The numbering is incorrect. When a compound contains both a double bond and an OH group, number the C skeleton to give the OH group the ower number

3-cyclohexenol (The "1" can be omitted.)

6-ethyl-5-octen-4-ol
a, b. E, Z, and R, S designations are shown.

c. Nine double bonds that can be E or Z

Six tetrahedral stereogenic centers
Maximum possible number of stereoisomers $=2^{15}$
10.47
stearic acid

hlghest melting point no double bonds
elaidic acid

intermediate melting point one E double bond
oleic acid

10.48

a.
 all trans double bonds higher melting point
b.

10.49 The more negative the ΔH°, the larger the $K_{\text {eq }}$ assuming entropy changes are comparable. Calculate the ΔH° for each reaction and compare.

$\mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{HCl}$

\rightarrow
[1] Bonds broken

	$\Delta H^{\circ}(\mathrm{kJ} / \mathrm{mol})$		
$\mathrm{C}-\mathrm{C} \pi$ bond			
$\mathrm{H}-\mathrm{Cl}$			+267
:---			
+431			
Total	$+698 \mathrm{~kJ} / \mathrm{mol}$.		

Compare the ΔH° :
Addition of HI: $\mathbf{- 6 8} \mathbf{k J} / \mathrm{mol}=$ more negative ΔH°, larger $K_{\text {eq }}$
Addition of $\mathrm{HCl}: \mathbf{- 5 1} \mathbf{~ k J} / \mathrm{mol}$
[2] Bonds formed

	$\Delta H^{\circ}(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{CH}_{2} \mathrm{ICH}$	-H
$\mathrm{C}-\mathrm{I}$	-410
	-222
Total	$-632 \mathrm{~kJ} / \mathrm{mol}$

[3] Overall $\Delta H^{\circ}=$

sum sum	$\begin{gathered} \text { ר Step [1] } \\ + \\ \text { + Step [2] } \end{gathered}$
+ 564	kJ/mol
-632	kJ/mol
-68	kJ/mol

[3] Overall $\Delta H^{\circ}=$

Chapter 10-22
10.50
a.

f.

b.

g.

c.

h.

d.

i.

e.

10.51
a.

f.

b.

c.

d.

g.

h.

i.
 $\xrightarrow[{\text { [2] } \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{HO}^{-}}]{\text {[1] 9-BBN }}$

e.

$\underset{\mathrm{CH}_{3}}{\mathrm{C}=\mathrm{CH}_{2}}$ [2] $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{HO}^{-} \xrightarrow{-}$

10.52

a.

d.

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{3}$
b.

e.

c.

f.

$\xrightarrow[\substack{\mathrm{CH}_{3} \mathrm{CH}_{2} \\ \mathrm{CH}_{3} \mathrm{CH}_{2}}]{\mathrm{C}}=\mathrm{CHCH}_{3}$
10.53 Hydroboration-oxidation results in addition of an OH group on the less substituted carbon, whereas acid-catalyzed addition of $\mathrm{H}_{2} \mathrm{O}$ results in the addition of an OH group on the more substituted carbon.
a.

hydroboration-oxidation
and
acid-catalyzed addition
b.

hydroboration-oxidation
c.

acid-catalyzed addition

d.
 \longleftarrow

hydroboration-oxidation
e.

Both methods would give product mixtures.

10.54

a. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$

b. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$

c.

d.

e.

Br adds here to less substituted C .
f.

OH adds here to less substituted C .
g.
 Br adds here
to less substituted C .
h.

10.55

Chapter 10-24

10.56

a.

b.

c.

10.57
a.

b.

c.

d.

e.

f.

g.

h. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3} \xrightarrow[\mathrm{H}_{2} \mathrm{SO}_{4}]{\mathrm{H}_{2} \mathrm{O}}$
 +

10.58 Draw each reaction. (a) The cis isomer of 4-octene gives two enantiomers on addition of Br_{2}. (b) The trans isomer gives a meso compound.
a.

10.59

10.60

a.

Chapter 10-26
b.

10.61

10.62

10.63 The isomerization reaction occurs by protonation and deprotonation.

10.64

10.65

A

This carbocation is resonance stabilized by the O atom, and therefore preferentially forms and results in B.

10.66

Chapter 10-28
10.67
a.

b.

c.

d.

e.

10.68

a.

b.

c.

d.

e.

a.

b.

c.

d.

(from b.)
e.

10.70

10.71 Having two rings joined together as in \mathbf{A} and \mathbf{B} creates a very rigid ring system and constrains bond angles. Evidently the bond angles around the $\mathrm{C}=\mathrm{C}$ in \mathbf{A} are close enough to the trigonal planar bond angle of 120° so that \mathbf{A} is stable. With \mathbf{B}, however, the $\mathrm{C}=\mathrm{C}$ is located at a carbon shared by both rings and the bond angles around the $\mathrm{C}=\mathrm{C}$ deviate greatly from the desired angle, so that \mathbf{B} is not a stable compound.

Chapter 10-30
10.72 a. Br_{2} adds in an anti fashion to form a meso dibromide. Rotate around the $\mathrm{C}-\mathrm{C}$ bond to place H and Br anti periplanar in the second step. HBr can be eliminated in two ways, but both give the same product.

b. Br_{2} addition forms two enantiomers. Anti periplanar elimination of H and Br gives the same alkene from both compounds.

c. The products in (a) and (b) are diastereomers.

10.74

10.75

10.76

Chapter 10-32
10.77

Chapter 11 Alkynes

Chapter Review

General facts about alkynes

- Alkynes contain a carbon-carbon triple bond consisting of a strong σ bond and two weak π bonds.

Each carbon is $s p$ hybridized and linear (11.1).

- Alkynes are named using the suffix -yne (11.2).
- Alkynes have weak intermolecular forces, giving them low mp's and low bp's, and making them water insoluble (11.3).
- Since its weaker π bonds make an alkyne electron rich, alkynes undergo addition reactions with electrophiles (11.6).

Addition reactions of alkynes

[1] Hydrohalogenation-Addition of $\mathrm{HX}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, or I$)(11.7)$

- Markovnikov's rule is followed. H bonds to the less substituted C in order to form the more stable carbocation.
[2] Halogenation-Addition of $\mathrm{X}_{2}(\mathrm{X}=\mathrm{Cl}$ or Br$)(11.8)$

- Bridged halonium ions are formed as intermediates.
- Anti addition of X_{2} occurs.
[3] Hydration-Addition of $\mathrm{H}_{2} \mathrm{O}$ (11.9)

- Markovnikov's rule is followed. H bonds to the less substituted C in order to form the more stable carbocation.
- The unstable enol that is first formed rearranges to a carbonyl group.

Chapter 11-2
[4] Hydroboration-oxidation-Addition of $\mathrm{H}_{2} \mathrm{O}$ (11.10)

- The unstable enol, first formed after oxidation, rearranges to a carbonyl group.

Reactions involving acetylide anions

[1] Formation of acetylide anions from terminal alkynes (11.6B)

- Typical bases used for the reaction are NaNH_{2} and NaH .
[2] Reaction of acetylide anions with alkyl halides (11.11A)

- The reaction follows an $\mathrm{S}_{\mathrm{N}} 2$ mechanism.
- The reaction works best with $\mathrm{CH}_{3} \mathrm{X}$ and $\mathrm{RCH}_{2} \mathrm{X}$.
[3] Reaction of acetylide anions with epoxides (11.11B)

- The reaction follows an $\mathrm{S}_{\mathrm{N}} 2$ mechanism.
- Ring opening occurs from the back side at the less substituted end of the epoxide.

Practice Test on Chapter Review

1. Draw the structure for the compound with the following IUPAC name: 5-tert-butyl-6,6-dimethyl-3-nonyne.
2. a. Which of the following compounds is an enol tautomer of compound \mathbf{A} ?

A
3.

2.

3.

4. A can be a tautomer of both compounds (1) and (2).
5. A can be a tautomer of compounds (1), (2), and (3).
b. Which of the following bases is strong enough to deprotonate $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CH}$ (propyne, $\mathrm{p} K_{\mathrm{a}}=25$)? The $\mathrm{p} K_{\mathrm{a}}$'s of the conjugate acids of the bases are given in parentheses.

1. $\mathrm{CH}_{3} \mathrm{Li}\left(\mathrm{p} K_{\mathrm{a}}=50\right)$
2. $\mathrm{NaOCH}_{3}\left(\mathrm{p} K_{\mathrm{a}}=15.5\right)$
3. $\mathrm{NaOCOCH}_{3}\left(\mathrm{p} K_{\mathrm{a}}=4.8\right)$
4. The bases in (1) and (2) are both strong enough.
5. The bases in (1), (2), and (3) are all strong enough.
6. Draw the organic products formed in the following reactions.
a.

b.

[3] $\mathrm{H}_{2} \mathrm{O}$
c.

d.

e.

Chapter 11-4
4. Draw two different enol tautomers for the following compound.

5. What acetylide anion and alkyl halide are needed to make the following alkyne?

Answers to Practice Test

1.

2. a. $2 \quad 3$.
b. 1
a.

b.

c.

d.

e.

4.

$(E+Z)$

5.

Answers to Problems

11.1 - An internal alkyne has the triple bond somewhere in the middle of the carbon chain.

- A terminal alkyne has the triple bond at the end of the carbon chain.

11.2

$\mathrm{C}_{s p}-\mathrm{C}_{s p^{3}}$
(b)

(a)
$\mathrm{C}_{s p^{3}-\mathrm{C}} \mathrm{sp}^{2}$
11.3 To name an alkyne:
[1] Find the longest chain that contains both atoms of the triple bond, change the -ane ending of the parent name to $-y n e$, and number the chain to give the first carbon of the triple bond the lower number.
[2] Name all substituents following the other rules of nomenclature.
a.

4,4-dipropyl-1-heptyne
c.

b. $\mathrm{CH}_{3} \mathrm{C} \equiv \underset{\substack{\mathrm{C} \\ \mathrm{CCl} \mathrm{CH}_{3}}}{\mathrm{CH}_{2} \mathrm{CH}_{3}}$
4-chloro-4-methyl-2-hexyne

(The longest chain must contain both functional groups.)

3-isopropyl-1,5-octadiyne

11.4 To work backwards from a name to a structure:

[1] Find the parent name and the functional group.
[2] Add the substituents to the appropriate carbon.
a. trans-2-ethynylcyclopentanol

5 C ring with OH at C 1

or

b. 4-tert-butyl-5-decyne

10 C chain with a triple bond

Chapter 11-6
c. 3-methylcyclononyne

9 C ring with a triple bond at C1

11.5 Two factors cause the boiling point increase. The linear $s p$ hybridized C's of the alkyne allow for more van der Waals attraction between alkyne molecules. Also, since a triple bond is more polarizable than a double bond, this increases the van der Waals forces between two molecules as well.

11.6 To convert an alkene to an alkyne:

[1] Make a vicinal dihalide from the alkene by addition of X_{2}.
[2] Add base to remove two equivalents of HX and form the alkyne.

b.

11.7 Acetylene has a $\mathrm{p} K_{\mathrm{a}}$ of 25 , so bases having a conjugate acid with a $\mathrm{p} K_{\mathrm{a}}$ above 25 will be able to deprotonate it.
a. $\mathrm{CH}_{3} \mathrm{NH}^{-}\left[\mathrm{p} \mathrm{K}_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)=40\right]$
c. $\mathrm{CH}_{2}=\mathrm{CH}^{-}\left[\mathrm{p} K_{\mathrm{a}}\left(\mathrm{CH}_{2}=\mathrm{CH}_{2}\right)=44\right]$ $\mathrm{p} K_{\mathrm{a}}>25=\mathrm{Can}$ deprotonate acetylene.
$\mathrm{p} K_{\mathrm{a}}>25=$ Can deprotonate acetylene.
d. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CO}^{-}\left\{\mathrm{p} \mathrm{K}_{\mathrm{a}}\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}\right]=18\right\}$ $\mathrm{p} K_{\mathrm{a}}<25=$ Cannot deprotonate acetylene.
11.8 To draw the products of reactions with HX:

- Add two moles of HX to the triple bond, following Markovnikov's rule.
- Both X's end up on the more substituted C.
a.

b.

c.

11.9
a.

c.

b.

11.10 Addition of one equivalent of X_{2} to alkynes forms trans dihalides.

Addition of two equivalents of X_{2} to alkynes forms tetrahalides.

11.11

11.12 To draw the keto form of each enol:

[1] Change the $\mathrm{C}-\mathrm{OH}$ to a $\mathrm{C}=\mathrm{O}$ at one end of the double bond.
[2] At the other end of the double bond, add a proton.
a.

new $\mathrm{C}-\mathrm{H}$ bond
c.

b.
 \longrightarrow

new $\mathrm{C}-\mathrm{H}$ bond
11.13 The treatment of alkynes with $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{SO}_{4}$, and HgSO_{4} yields ketones.

11.14

a.

b.

constitutional isomers, but not tautomers

Chapter 11-8
11.15 Reaction with $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{SO}_{4}$, and HgSO_{4} adds the oxygen to the more substituted carbon. Reaction with [1] $\mathrm{R}_{2} \mathrm{BH},[2] \mathrm{H}_{2} \mathrm{O}_{2},{ }^{-} \mathrm{OH}$ adds the oxygen to the less substituted carbon.
a. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H} \xrightarrow[\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HgSO}_{4}]{\mathrm{H}_{2} \mathrm{O}}$
 Forms a ketone. $\mathrm{H}_{2} \mathrm{O}$ is added with the O atom on the more substituted carbon.

b.

Forms a ketone. $\mathrm{H}_{2} \mathrm{O}$ is added with the O atom on the more substituted carbon.

 Forms an aldehyde. $\mathrm{H}_{2} \mathrm{O}$ is added with the O atom on the less substituted carbon.
11.16
a. $\mathrm{H}-\mathrm{C}=\mathrm{C}-\mathrm{H} \xrightarrow{[1] \mathrm{NaH}}$

$$
\mathrm{H}-\mathrm{C} \equiv \mathrm{C}: \stackrel{+\mathrm{H}_{2} \xrightarrow{[2]\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2}-\mathrm{Cl}}{ }^{\mathrm{C}}}{\longrightarrow}
$$ $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2}-\mathrm{C}=\mathrm{C}-\mathrm{H}+\mathrm{NaCl}$

11.17
a. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{C} \equiv \mathrm{CH}$

[1] $\mathrm{CH}_{3} \mathrm{Cl}+{ }^{-} \mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
[2] $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}^{-}+\mathrm{Cl}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
internal alkyne two possibilities
c. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CC} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{3}$

11.18

11.19

2,2,5,5-tetramethyl-3-hexyne

11.20

a.
 acetylide anion attacks from below
b.

Backside attack of the nucleophile (${ }^{-} \mathrm{C} \equiv \mathrm{CH}$) at either C since both ends are equally substituted
11.21
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br} \xrightarrow{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}^{-} \mathrm{Na}^{+}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{3}$
b. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{Cl} \xrightarrow{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}^{-} \mathrm{Na}^{+}}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{3}$
c. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{CCl} \xrightarrow{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}^{-} \mathrm{Na}^{+}}\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{C}=\mathrm{CHCH}_{3}+\quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}$
d. $\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}^{-} \mathrm{Na}^{+}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}+\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}^{-} \mathrm{Na}^{+}$

Chapter 11-10
e. $\left\langle\xrightarrow{\mathrm{O}} \xrightarrow{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}^{-} \mathrm{Na}^{+}} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right.$
f.

11.22 To use a retrosynthetic analysis:
[1] Count the number of carbon atoms in the starting material and product.
[2] Look at the functional groups in the starting material and product.

- Determine what types of reactions can form the product.
- Determine what types of reactions the starting material can undergo.
[3] Work backwards from the product to make the starting material.
[4] Write out the synthesis in the synthetic direction.

11.23

4 carbons, aldehyde functional group (can be made by hydroboration-oxidation of a terminal alkyne)

2 carbons, $\mathrm{C}=\mathrm{C}$ functional group
(can form an acetylide
anion by reaction with NaH)

Retrosynthetic analysis:

11.24
a.

6 C alkyne \rightarrow hexyne
$\mathrm{C} \equiv \mathrm{C}$ at $\mathrm{C} 1 \rightarrow 1$-hexyne
CH_{3} and $\mathrm{CH}_{2} \mathrm{CH}_{3}$ at C 3
3-ethyl-3-methyl-1-hexyne
b.

11.25
a.

keto form

enol form
b.

enol form

keto form

11.26

a, b.

11.27 Use the rules from Answer 11.3 to name the alkynes.

11.28 Use the rules from Answer 11.3 to name the alkynes.
a.

5-methyl-3-heptyne
5-methyl-3-heptyne

3-ethyl-1-hexyne
d.

1-hexyne 3 -ethyl
e.

2,5-octadiyne
b.

2,5-dimethyl-3-hexyne

6-methyl
g.

1-ethynyl-6-methylcyclohexene

Chapter 11-12
11.29 Use the directions from Answer 11.4 to draw each structure.
a. 5,6-dimethyl-2-heptyne

b. 5-tert-butyl-6,6-dimethyl-3-nonyne

c. (4S)-4-chloro-2-pentyne

d. cis-1-ethynyl-2-methylcyclopentane

e. 3,4-dimethyl-1,5-octadiyne

f. (6Z)-6-methyl-6-octen-1-yne

11.30 Keto-enol tautomers are constitutional isomers in equilibrium that differ in the location of a double bond and a hydrogen. The OH in an enol must be bonded to a $\mathrm{C}=\mathrm{C}$.
a.

- $\mathrm{C}=\mathrm{O}$
- one more CH bond

- OH on $\mathrm{C}=\mathrm{C}$
keto-enol tautomers
b. and

OH is not bonded to the $\mathrm{C}=\mathrm{C}$.
NOT keto-enol tautomers
c.
 and

- OH on $\mathrm{C}=\mathrm{C}$
- one more CH bond
keto-enol tautomers
d.

NOT keto-enol tautomers
11.31 To draw the enol form of each keto form: [1] Change the $\mathrm{C}=\mathrm{O}$ to a $\mathrm{C}-\mathrm{OH}$. [2] Change one single $\mathrm{C}-\mathrm{C}$ bond to a double bond, making sure the OH group is bonded to the $\mathrm{C}=\mathrm{C}$. Use the directions from Answer 11.12 to draw each keto form.
a.

c.

b.

d.

11.32 Tautomers are constitutional isomers that are in equilibrium and differ in the location of a double bond and a hydrogen atom.

A
a.

tautomer
b.

constitutional isomer
c.

d.

neither

11.33

11.34

11.35

11.36

Chapter 11-14
11.37
a.

c.

b.

d.

$\xrightarrow[{[2] \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{HO}^{-}}]{\left[1 \mathrm{R}_{2} \mathrm{BH}\right.}$
11.38
a.

b. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{CH} \frac{[1] \mathrm{R}_{2} \mathrm{BH}}{[2] \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{HO}^{-}}$
$\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{C}-\mathrm{CH}_{2} \mathrm{CHO}$
c.

d. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{CH} \xrightarrow[{[2] \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}}]{[1] \mathrm{NaH}}\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{3}$
11.39 Reaction rate (which is determined by $E_{\text {a }}$) and enthalpy $\left(\Delta H^{\circ}\right)$ are not related. More exothermic reactions are not necessarily faster. Since the addition of HX to an alkene forms a more stable carbocation in an endothermic, rate-determining step, this carbocation is formed faster by the Hammond postulate.

11.40
a.

b.

c.

d.

11.41 To determine what two alkynes could yield the given ketone, work backwards by drawing the enols and then the alkynes.

11.42

a.

b.

11.43

a.

b.

c.

d.

e. $\mathrm{HC} \equiv \mathrm{C}^{-}+\mathrm{D}_{2} \mathrm{O} \longrightarrow \mathrm{HC} \equiv \mathrm{CD}+\mathrm{DO}^{-}$
f.

g.

h.

[2] $\mathrm{HO}-\mathrm{H}$

i.

[2]

j.

Chapter 11-16
11.44

11.45

11.46

11.47

11.48
a.

b.

OH

11.49

Reaction by-products:
$2 \ddot{\mathrm{~N}} \mathrm{H}_{3}+2 \mathrm{Br}^{-}$

Chapter 11-18
11.50 A carbanion is more stable when its lone pair is in an orbital with a higher percentage of the smaller s orbital. A carbocation is more stable when its positive charge is due to a vacant orbital with a lower percentage of the smaller s orbital. In $\mathrm{HC} \equiv \mathrm{C}^{+}$, the positively charged C uses two p orbitals to form two π bonds. If the σ bond is formed using an $s p$ hybrid orbital, the second hybrid orbital would have to remain vacant, a highly unstable situation.

11.51

11.52
a.

11.53

$$
\stackrel{+}{\mathrm{H}-\stackrel{+}{\mathrm{O}} \mathrm{H}_{2}}
$$

$+\mathrm{H}_{2} \underset{\mathrm{O}}{ }$

11.54

a. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CHBr}_{2} \xrightarrow[\begin{array}{c}\text { (2 equiv) } \\ \text { DMSO }\end{array}]{\mathrm{KOC}\left(\mathrm{CH}_{3}\right)_{3}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CH}$
b. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHBrCH}_{3} \xrightarrow{\mathrm{KOC}\left(\mathrm{CH}_{3}\right)_{3}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CH}_{2} \xrightarrow{\mathrm{Br}_{2}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHBrCH}_{2} \mathrm{Br} \xrightarrow[\text { excess }]{\mathrm{NaNH}_{2}} \quad \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}=\mathrm{CH}$
c. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CH}_{2} \xrightarrow{\mathrm{Br}_{2}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHBrCH}_{2} \mathrm{Br} \xrightarrow[\text { excess }]{\mathrm{NaNH}_{2}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CH}$
11.55 The alkyl halides must be methyl or 1°.
a. $\mathrm{HC} \equiv \mathrm{C}-\left\{-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \Longrightarrow \mathrm{HC} \equiv \mathrm{C}:+\underset{\sim}{\mathrm{Cl}}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} 1^{\circ} \mathrm{RX}\right.$
b.

c.

$1^{\circ} \mathrm{RX}$

11.56

a. $\mathrm{HC} \equiv \mathrm{C}-\mathrm{H} \xrightarrow{\mathrm{Na}^{+} \mathrm{H}^{-}} \mathrm{HC} \equiv \mathrm{C}^{-} \xrightarrow{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2}-\mathrm{Cl}}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{C} \equiv \mathrm{CH}$
b. $\mathrm{HC} \equiv \mathrm{C}-\mathrm{H} \xrightarrow{\mathrm{Na}^{+} \mathrm{H}^{-}} \mathrm{HC} \equiv \mathrm{C}^{-} \xrightarrow{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Cl}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH} \xrightarrow{\mathrm{NaH}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}^{-}$

Chapter 11-20
c. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH} \xrightarrow[\text { (from b.) }]{[1] \mathrm{R}_{2} \mathrm{BH}} \underset{[2] \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{HO}^{-}}{ } \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$
d. $\underset{\text { (from b.) }}{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}} \xrightarrow[\substack{\mathrm{H}_{2} \mathrm{SO}_{4} \\ \mathrm{HgSO}_{4}}]{\mathrm{H}_{2} \mathrm{O}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-{ }^{-\mathrm{C}}{ }_{-}^{\mathrm{O}} \mathrm{CH}_{3}$
e. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH} \xrightarrow{2 \mathrm{HCl}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CCl}_{2} \mathrm{CH}_{3}$
(from b.)
f.

11.57
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2} \xrightarrow{\mathrm{Cl}_{2}} \mathrm{CH}_{3} \mathrm{CH}_{2} \stackrel{\stackrel{\mathrm{Cl}}{\mathrm{C}} \mathrm{C}}{\mathrm{C}}-\stackrel{\stackrel{\mathrm{Cl}}{\mathrm{C}} \mathrm{C}_{2}}{2} \xrightarrow{2-\mathrm{NH}_{2}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}$
b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH} \xrightarrow[\text { (from a.) }]{\mathrm{HBr}} \underset{\text { (2 equiv) }}{\mathrm{HBr}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CBr}_{2} \mathrm{CH}_{3}$
c. $\underset{\substack{\text { (from a.) }}}{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}} \xrightarrow[\text { (2 equiv) }]{\mathrm{Cl}_{2}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CCl}_{2} \mathrm{CHCl}_{2}$
d. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2} \xrightarrow{\mathrm{Br}_{2}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHBrCH}_{2} \mathrm{Br}$
e. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH} \xrightarrow{\mathrm{NaH}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}^{-} \xrightarrow{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Br}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ (from a.)
f. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}^{-} \xrightarrow{\text { (from e.) }} \stackrel{[1] \angle \mathrm{O}}{[2] \mathrm{H}_{2} \mathrm{O}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
g.

(+ enantiomer)
11.58
a. $\mathrm{HC} \equiv \mathrm{CH} \xrightarrow{\mathrm{NaH}} \mathrm{HC} \equiv \mathrm{C}^{-} \xrightarrow{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}$
b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH} \xrightarrow{\mathrm{NaH}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}^{-} \xrightarrow{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{3}$ (from a.)
c. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}^{-} \xrightarrow[\text { from b.) }]{\text { [2] } \mathrm{H}_{2} \mathrm{O}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
d. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
[1] NaH (from c.)
[2] $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$
11.59

11.60
a.

b.

11.61

a.

b.

11.62 Two resonance structures can be drawn for an enol.

Since the second resonance structure places an electron pair (and therefore a negative charge) on an enol carbon, this makes the $\mathrm{C}=\mathrm{C}$ more nucleophilic than the $\mathrm{C}=\mathrm{C}$ of an alkene for which no additional resonance forms can be drawn. Thus, the OH group donates electron density to the $\mathrm{C}=\mathrm{C}$ by a resonance effect.

Chapter 11-22
11.63

11.64

11.65

11.66 A more stable internal alkyne can be isomerized to a less stable terminal alkyne under these reaction conditions because when $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}$ is first formed, it contains an $s p$ hybridized $\mathrm{C}-\mathrm{H}$ bond, which is more acidic than any proton in $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$. Under the reaction conditions, this proton is removed with base. Formation of the resulting acetylide anion drives the equilibrium to favor its formation. Protonation of this acetylide anion gives the less stable terminal alkyne.

In this case the reaction stops with formation of 2,5-dimethyl-2,3-hexadiene because a terminal alkyne (with an acidic $s p$ hybridized $\mathrm{C}-\mathrm{H}$ bond) is not formed. Removal of the circled H in the diene re-forms the anion shown in resonance structures \mathbf{A} and \mathbf{B}.
11.67

Chapter 11-24
11.68 In the presence of acid, (R) - α-methylbutyrophenone enolizes to form an achiral enol.

$(R)-\alpha$-methylbutyrophenone

(+ 1 resonance structure)

(E and Z isomers) achiral enol

The achiral enol can then be protonated from above or below the plane to form a racemic mixture that is optically inactive.

Chapter 12 Oxidation and Reduction

Chapter Review

Summary: Terms that describe reaction selectivity

- A regioselective reaction forms predominately or exclusively one constitutional isomer (Section 8.5).

- A stereoselective reaction forms predominately or exclusively one stereoisomer (Section 8.5).

- An enantioselective reaction forms predominately or exclusively one enantiomer (Section 12.15).

Definitions of oxidation and reduction

Oxidation reactions result in:

- an increase in the number of $\mathrm{C}-\mathrm{Z}$ bonds, or
- a decrease in the number of $\mathrm{C}-\mathrm{H}$ bonds.

Reduction reactions result in:

- a decrease in the number of $\mathrm{C}-\mathrm{Z}$ bonds, or
- an increase in the number of $\mathrm{C}-\mathrm{H}$ bonds.
[$\mathrm{Z}=$ an element more electronegative than C]

Reduction reactions

[1] Reduction of alkenes-Catalytic hydrogenation (12.3)

- Syn addition of H_{2} occurs.
- Increasing alkyl substitution on the $\mathrm{C}=\mathrm{C}$ decreases the rate of reaction.

Chapter 12-2
[2] Reduction of alkynes
[a]

[b]

$$
\mathrm{R}-\mathrm{C} \equiv \mathrm{C}-\mathrm{R} \quad \xrightarrow[\begin{array}{c}
\text { Lindlar } \\
\text { catalyst }
\end{array}]{\mathrm{H}_{2}}
$$

cis alkene

[c]

$$
\mathrm{R}-\mathrm{C} \equiv \mathrm{C}-\mathrm{R} \xrightarrow[\mathrm{NH}_{3}]{\mathrm{Na}}
$$

(

- Two equivalents of H_{2} are added and four new $\mathrm{C}-\mathrm{H}$ bonds are formed (12.5A).
- Syn addition of H_{2} occurs, forming a cis alkene (12.5B).
- The Lindlar catalyst is deactivated so that reaction stops after one equivalent of H_{2} has been added.
- Anti addition of H_{2} occurs, forming a trans alkene (12.5C).
[3] Reduction of alkyl halides (12.6)

$$
\mathrm{R}-\mathrm{X} \xrightarrow[{\text { [2] } \mathrm{H}_{2} \mathrm{O}}]{\text { [1] } \mathrm{LiAlH}_{4}} \underset{\begin{array}{c}
\mathrm{R}-\mathrm{H} \\
\text { alkane }
\end{array}}{\substack{ \\
\hline}}
$$

- The reaction follows an $\mathbf{S}_{\mathbf{N}} \mathbf{2}$ mechanism.
- $\mathrm{CH}_{3} \mathrm{X}$ and $\mathrm{RCH}_{2} \mathrm{X}$ react faster than more substituted RX.
[4] Reduction of epoxides (12.6)

- The reaction follows an $\mathbf{S}_{\mathbf{N}} \mathbf{2}$ mechanism.
- In unsymmetrical epoxides, H^{-}(from LiAlH_{4}) attacks at the less substituted carbon.

Oxidation reactions

[1] Oxidation of alkenes
[a] Epoxidation (12.8)

- The mechanism has one step.
- Syn addition of an O atom occurs.
- The reaction is stereospecific.
[b] Anti dihydroxylation (12.9A)

- Ring opening of an epoxide intermediate with ${ }^{-} \mathrm{OH}$ or $\mathrm{H}_{2} \mathrm{O}$ forms a 1,2-diol with two OH groups added in an anti fashion.
[c] Syn dihydroxylation (12.9B)

- Each reagent adds two new $\mathrm{C}-\mathrm{O}$ bonds to the $\mathrm{C}=\mathrm{C}$ in a syn fashion.
[d] Oxidative cleavage (12.10)

- Both the σ and π bonds of the alkene are cleaved to form two carbonyl groups.
[2] Oxidative cleavage of alkynes (12.11)
[a]

[b]

- The σ bond and both π bonds of the alkyne are cleaved.
[3] Oxidation of alcohols (12.12, 12.13)
[a]

[b]

- Oxidation of a 1° alcohol with PCC or $\mathrm{HCrO}_{4}{ }^{-}$(Amberlyst A-26 resin) stops at the aldehyde stage. Only one $\mathrm{C}-\mathrm{H}$ bond is replaced by a $\mathrm{C}-\mathrm{O}$ bond.
- Oxidation of a 1^{0} alcohol under harsher reaction conditions- CrO_{3} (or $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ or $\left.\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)+\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{SO}_{4}$-affords a RCOOH . Two $\mathrm{C}-\mathrm{H}$ bonds are replaced by two $\mathrm{C}-\mathrm{O}$ bonds.
- Since a 2° alcohol has only one $\mathrm{C}-\mathrm{H}$ bond on the carbon bearing the OH group, all Cr^{6+} reagents- $\mathrm{PCC}, \mathrm{CrO}_{3}, \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, or HCrO_{4}^{-}(Amberlyst A-26 resin)-oxidize a 2° alcohol to a ketone.
[4] Asymmetric epoxidation of allylic alcohols (12.15)

Chapter 12-4

Practice Test on Chapter Review

1.a. Compound \mathbf{X} has a molecular formula of $\mathrm{C}_{9} \mathrm{H}_{12}$ and contains no triple bonds. \mathbf{X} is hydrogenated to a compound of molecular formula $\mathrm{C}_{9} \mathrm{H}_{14}$ with excess H_{2} and a palladium catalyst. What can be said about \mathbf{X} ?

1. \mathbf{X} has four rings. 4. \mathbf{X} has one ring and three double bonds.
2. \mathbf{X} has three rings and one double bond. 5. \mathbf{X} has four double bonds.
3. \mathbf{X} has two rings and two double bonds.
b. Syn addition to an alkene occurs exclusively with which reagents?
4. OsO_{4}
5. $\mathrm{KMnO}_{4}, \mathrm{H}_{2} \mathrm{O},{ }^{-} \mathrm{OH}$
6. mCPBA, then $\mathrm{H}_{2} \mathrm{O},{ }^{-} \mathrm{OH}$
7. Both reagents (1) and (2) give syn addition exclusively.
8. Reagents (1), (2), and (3) give syn addition exclusively.
c. Which of the following reagents adds to an alkene exclusively in an anti fashion?
9. Br_{2}
10. Reagents (1) and (2) both add in an anti fashion.
11. H_{2}, Pd-C
12. Reagents (1), (2), and (3) all add in an anti fashion.
13. BH_{3}, then $\mathrm{H}_{2} \mathrm{O}_{2},{ }^{-} \mathrm{OH}$
14. Label each statement as True (T) or False (F).
a. PCC oxidizes 1° alcohols to aldehydes.
b. CrO_{3} oxidizes 2° alcohols to ketones.
c. Treatment of 2-hexyne with Na in NH_{3} forms cis-2-hexene.
d. Reduction of propene oxide with LiAlH_{4} forms 1-propanol.
e. Ozonolysis of 2-methyl-2-octene forms one ketone and one aldehyde.
f. mCPBA is an oxidizing agent that converts alkenes to trans diols.
g. 1-Octen-5-yne reacts with H_{2} and $\mathrm{Pd}-\mathrm{C}$, but does not react with H_{2} and Lindlar catalyst.
h. Treatment of cyclohexene with OsO_{4} affords an optically inactive product mixture that contains two enantiomers.
15. Label each reagent as an oxidizing agent, reducing agent, or neither.
a. O_{3}
b. LiAlH_{4}
c. mCPBA
d. $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{SO}_{4}$
e. PCC
f. $\mathrm{Na}, \mathrm{NH}_{3}$
16. Draw the organic products formed in each reaction and indicate stereochemistry when necessary.
a.

b.

c.

d.

17. a. Fill in the appropriate starting material (including any needed stereochemistry) in the following reaction.

b. Fill in the appropriate reagent in the following reaction.

c. What starting material is needed for the following reaction?

Chapter 12-6

Answers to Practice Test

1.a. 2
2.a. T
3.a. oxidizing
b. 4
b. T
b. reducing
c. 1
c. F
c. oxidizing
d. F
d. neither
e. T
e. oxidizing
f. F
f. reducing
g. F
h. F
4.
a.

5.
a.

b.

b. Sharpless reagent (+)-DET
c.

d.

c.

Chapter 12: Answers to Problems

12.1 Oxidation results in an increase in the number of $\mathrm{C}-\mathrm{Z}$ bonds (usually $\mathrm{C}-\mathrm{O}$ bonds) or a decrease in the number of $\mathrm{C}-\mathrm{H}$ bonds.
Reduction results in a decrease in the number of $\mathrm{C}-\mathrm{Z}$ bonds (usually $\mathrm{C}-\mathrm{O}$ bonds) or an increase in the number of $\mathrm{C}-\mathrm{H}$ bonds.
a.

 oxidation
c.

b.
 reduction
d.

1 new $\mathrm{C}-\mathrm{H}$ bond and 1 new $\mathrm{C}-\mathrm{Cl}$ bond
12.2 Hydrogenation is the addition of hydrogen. When alkenes are hydrogenated, they are reduced by the addition of H_{2} to the π bond. To draw the alkane product, add a H to each C of the double bond.
a.

c.

b.

12.3 Draw the alkenes that form each alkane when hydrogenated.
a.

c.

or

or

or

 $/ \xrightarrow[\text { Pd-C }]{\mathrm{H}_{2}}$

b.

12.4 Cis alkenes are less stable than trans alkenes, so they have larger heats of hydrogenation. Increasing alkyl substitution increases the stability of a $\mathrm{C}=\mathrm{C}$, thus decreasing the heat of hydrogenation.
cis alkane

less stable
larger heat of hydrogenation

12.5 Hydrogenation products must be identical to use hydrogenation data to evaluate the relative stability of the starting materials.

12.6

a.

b.

c.

Chapter 12-8

12.7				
Compound	Molecular formula before hydrogenation	Molecular formula after hydrogenation	Number of rings	Number of π bonds
\mathbf{A}	$\mathrm{C}_{10} \mathrm{H}_{12}$	$\mathrm{C}_{10} \mathrm{H}_{16}$	3	2
\mathbf{B}	$\mathrm{C}_{4} \mathrm{H}_{8}$	$\mathrm{C}_{4} \mathrm{H}_{10}$	0	1
\mathbf{C}	$\mathrm{C}_{6} \mathrm{H}_{8}$	$\mathrm{C}_{6} \mathrm{H}_{12}$	1	2

12.8

A has 2 double bonds.	C has 1 double bond. lowest melting point	B has 0 double bonds. intermediate melting point
highest melting point		

12.9 Hydrogenation of $\mathrm{HC} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ and $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{3}$ yields the same compound. The heat of hydrogenation is larger for $\mathrm{HC} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ than for $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{3}$ because internal alkynes are more stable (lower in energy) than terminal alkynes.
12.10

12.11 In the presence of $\mathrm{Pd}-\mathrm{C}, \mathrm{H}_{2}$ adds to alkenes and alkynes to form alkanes. In the presence of the Lindlar catalyst, only alkynes react with H_{2} to form cis alkenes.
a.

b.

N
12.12 Use the directions from Answer 12.11.
a.

b.

c.

d. $\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
$\xrightarrow{\mathrm{Na}, \mathrm{NH}_{3}}$

12.13

$$
\text { "M } \underset{\substack{\text { Lindlar } \\ \text { catalyst }}}{\mathrm{H}_{2}}
$$

12.14 LiAlH_{4} reduces alkyl halides to alkanes and epoxides to alcohols.
a.

b.

12.15 To draw the product, add an O atom across the π bond of the $\mathrm{C}=\mathrm{C}$.
a.

c.

b.

12.16 For epoxidation reactions:

- There are two possible products: O adds from above and below the double bond.
- Substituents on the $\mathrm{C}=\mathrm{C}$ retain their original configuration in the products.
a.

b.

c.

Chapter 12-10
12.17 Treatment of an alkene with a peroxyacid followed by $\mathrm{H}_{2} \mathrm{O}, \mathrm{HO}^{-}$adds two hydroxy groups in an anti fashion. cis-2-Butene and trans-2-butene yield different products of dihydroxylation. cis-2-Butene gives a mixture of two enantiomers and trans-2-butene gives a meso compound. The reaction is stereospecific because two stereoisomeric starting materials give different products that are also stereoisomers of each other.

12.18 Treatment of an alkene with OsO_{4} adds two hydroxy groups in a syn fashion. cis-2-Butene and trans-2-butene yield different stereoisomers in this dihydroxylation, so the reaction is stereospecific.

12.19 To draw the oxidative cleavage products:

- Locate all the π bonds in the molecule.
- Replace all $\mathrm{C}=\mathrm{C}$'s with two $\mathrm{C}=\mathrm{O}$'s.

Replace this π bond with two $\mathrm{C}=\mathrm{O}$'s.
a.

b.

c.

12.20 To find the alkene that yields the oxidative cleavage products:

- Find the two carbonyl groups in the products.
- Join the two carbonyl carbons together with a double bond. This is the double bond that was broken during ozonolysis.
a.

c.
 Join these two C's.

b.
 identical molecule.

12.21

a.

c.

b.

12.22 To draw the products of oxidative cleavage of alkynes:

- Locate the triple bond.
- For internal alkynes, convert the $s p$ hybridized \mathbf{C} to $\mathbf{C O O H}$.
- For terminal alkynes, the $\boldsymbol{s p}$ hybridized $\mathbf{C}-\mathbf{H}$ becomes CO_{2}.
a.

b.

c.

Chapter 12-12
12.23
a. $\mathrm{CO}_{2}+\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CO}_{2} \mathrm{H}$

b. $\begin{gathered}\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CO}_{2} \mathrm{H} \\ \downarrow \\ \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}-\mathrm{C}=\mathrm{C}-\mathrm{CHCH}_{2} \mathrm{CH}_{3} \\ \mathrm{CH}_{3} \quad \stackrel{1}{\mathrm{CH}} \mathrm{CH}_{3}\end{gathered}$
c. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}, \mathrm{HO}_{2} \mathrm{CCH}_{2} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$

d. $\mathrm{HO}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{14} \mathrm{CO}_{2} \mathrm{H} \Rightarrow$

12.24 For the oxidation of alcohols, remember:

- 1° Alcohols are oxidized to aldehydes with PCC.
- 1° Alcohols are oxidized to carboxylic acids with oxidizing agents like CrO_{3} or $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$.
- $\mathbf{2}^{\circ}$ Alcohols are oxidized to ketones with all Cr^{6+} reagents.
a.

c.

b.
 $\xrightarrow{\mathrm{PCC}}$

d.

12.25 Upon treatment with HCrO_{4}^{-}-Amberlyst A-26 resin:
- 1° Alcohols are oxidized to aldehydes.
- $\mathbf{2}^{\circ}$ Alcohols are oxidized to ketones.
a.

c.

12.26

The by-products of the reaction with sodium
 hypochlorite are water and table salt (NaCl), as opposed to the by-products with $\mathrm{HCrO}_{4}^{-}-$ Amberlyst A-26 resin, which contain carcinogenic Cr^{3+} metal.
b. Oxidation with NaOCl has at least two advantages over oxidation with $\mathrm{CrO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{H}_{2} \mathrm{O}$. Since no Cr^{6+} is used as oxidant, there are no Cr by-products that must be disposed of. Also, CrO_{3} oxidation is carried out in corrosive inorganic acids $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ and oxidation with NaOCl avoids this.
12.27 To draw the products of a Sharpless epoxidation:

- With the $\mathrm{C}=\mathrm{C}$ horizontal, draw the allylic alcohol with the OH on the top right of the alkene.
- Add the new oxygen above the plane if $(-)$-DET is used and below the plane if $(+)$-DET is used.
a.

b.

(-)-DET adds O above the plane.
12.28 Sharpless epoxidation needs an allylic alcohol as the starting material. Alkenes with no allylic OH group will not undergo reaction with the Sharpless reagent.

12.29
a.

b.

c.

d.

Chapter 12-14
e.

12.30

12.31

12.32 Use the rules from Answer 12.1.
a.

c.
 reduction

b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$
 $\mathrm{CH}_{2}=\mathrm{CH}_{2}$ neither $1 \mathrm{C}-\mathrm{H}$ and $1 \mathrm{C}-\mathrm{Br}$ bond are removed.
d.

 bin duction
12.33 Use the principles from Answer 12.2 and draw the products of syn addition of H_{2} from above and below the $\mathrm{C}=\mathrm{C}$.
a.

b.

c.

12.34 Increasing alkyl substitution increases alkene stability, thus decreasing the heat of hydrogenation.

2-methyl-2-butene
trisubstituted smallest $\Delta H^{\circ}=-112 \mathrm{~kJ} / \mathrm{mol}$

2-methyl-1-butene

disubstituted
intermediate $\Delta H^{\circ}=-119 \mathrm{~kJ} / \mathrm{mol}$

3-methyl-1-butene
monosubstituted
largest $\Delta H^{\circ}=-127 \mathrm{~kJ} / \mathrm{mol}$

12.35

A possible structure:
a. Compound \mathbf{A} : molecular formula $\mathrm{C}_{5} \mathrm{H}_{8}$: hydrogenated to $\mathrm{C}_{5} \mathrm{H}_{10}$. 2 degrees of unsaturation, 1 is hydrogenated.
1 ring and 1π bond
b. Compound B: molecular formula $\mathrm{C}_{10} \mathrm{H}_{16}$: hydrogenated to $\mathrm{C}_{10} \mathrm{H}_{18}$. 3 degrees of unsaturation, 1 is hydrogenated.
2 rings and 1π bond

c. Compound C : molecular formula $\mathrm{C}_{8} \mathrm{H}_{8}$: hydrogenated to $\mathrm{C}_{8} \mathrm{H}_{16}$. 5 degrees of unsaturation, 4 are hydrogenated.
1 ring and 4π bonds \qquad

12.36

A

B

C
a. monosubstituted largest heat of hydrogenation
b. fastest reaction rate
a. tetrasubstituted smallest heat of hydrogenation
b. slowest reaction rate
a. trisubstituted intermediate heat of hydrogenation
b. intermediate reaction rate
c.

c.
$\xrightarrow[{\text { [2] } \mathrm{Zn}, \mathrm{H}_{2} \mathrm{O}}]{[1] \mathrm{O}_{3}}$

c.
$\xrightarrow[{[2] \mathrm{Zn}, \mathrm{H}_{2} \mathrm{O}}]{[1] \mathrm{O}_{3}}$

12.37
a.

b.

c.

Chapter 12-16
d.

12.38
a.

h.

no reaction
b.
 $\xrightarrow[\text { Lindlar catalyst }]{\mathrm{H}_{2}}$ no reaction
i.

c.

d.

j.

e.

k.

f.

I.

g.

12.39
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \xrightarrow[\text { Pd-C }]{\mathrm{H}_{2} \text { (excess) }}$

b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \xrightarrow[\text { Lindlar catalyst }]{\mathrm{H}_{2}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }_{C=}^{C} C_{C}^{C C_{2}} \mathrm{CH}_{2} \mathrm{CH}_{3}$ cis alkene
c.

d. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \xrightarrow[{\text { [2] } \mathrm{H}_{2} \mathrm{O}}]{[1] \mathrm{O}_{3}}$

12.40

b.

c.

g.

d. $\mathrm{CH}_{3} \mathrm{CH}_{2}$

h.

12.41

a.

c.

b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow{\mathrm{PCC}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}^{-}{ }^{\text {II }} \mathrm{H}$

12.42

a.

b.

c.
 [1] mCPBA
 $\xrightarrow[{\text { [3] } \mathrm{H}_{2} \mathrm{O}}]{\text { [2] } \mathrm{LiAlH}_{4}}$

d.

Chapter 12-18
12.43

12.44 LiAlH_{4} attacks at the less substituted end of an unsymmetrical epoxide to form an alcohol with an OH on the more substituted carbon.

12.45 The two sides of the $C=C$ of A are different. Since D_{2} adds only from above, this must mean that this side is less sterically hindered. Other reagents will also add from the same side.

12.46 Alkenes treated with [1] OsO_{4} followed by NaHSO_{3} in $\mathrm{H}_{2} \mathrm{O}$ will undergo syn addition, whereas alkenes treated with [2] $\mathrm{CH}_{3} \mathrm{CO}_{3} \mathrm{H}$ followed by ${ }^{-} \mathrm{OH}$ in $\mathrm{H}_{2} \mathrm{O}$ will undergo anti addition.
a. [1]

[2]

[2]

c. [1]

[2]

12.47

12.48

Chapter 12-20
12.49 Use the directions from Answer 12.19.
a. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{3} \xrightarrow{[1] \mathrm{O}_{3}} \quad\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{C}=\mathrm{O}+\mathrm{O}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$
b.

c.

d.

12.50
a. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{O}$ and $\mathrm{CH}_{2}=\mathrm{O} \Longrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$
b.

c. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$ only $\Longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ Join this C to the same C d. in another identical molecule.

12.51 Use the directions from Answer 12.20.

12.52

a.

b.

12.53

a.

b.

c.

12.54
a.

b.

12.55

The hydrogenation reaction tells you that both oximene and myrcene have 3π bonds (and no rings). Use this carbon backbone and add in the double bonds based on the oxidative cleavage products.
3 degrees of unsaturation

Myrcene: $\quad \begin{array}{cc}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{O} \quad \mathrm{CH}_{2}=\mathrm{O} \\ (2 \text { equiv })\end{array}$

Chapter 12-22
12.56

12.57 Since hydrogenation of DHA forms $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{20} \mathrm{COOH}$, DHA is a 22-carbon fatty acid. The ozonolysis products show where the double bonds are located.

12.58 The stereogenic center (labeled with *) in both structures can be R or S.

12.59

12.60

12.61

Replace this O
Replace this O
a.

b.

12.62 Use retrosynthetic analysis to devise a synthesis of each hydrocarbon from acetylene.
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2} \Longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH} \equiv \mathrm{CH} \Longrightarrow{ }^{-} \mathrm{C} \equiv \mathrm{CH} \Longrightarrow \mathrm{HC} \equiv \mathrm{CH}$

b.

c.

d. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \Longrightarrow \mathrm{HC} \equiv \mathrm{CCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \Longrightarrow{ }^{-} \mathrm{C} \equiv \mathrm{CH} \Longrightarrow \mathrm{HC} \equiv \mathrm{CH}$

Chapter 12-24
12.63

12.64

12.65

d.

12.66

a. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CH}_{2} \xrightarrow[{[1] \mathrm{BH}_{3}}]{[2] \mathrm{H}_{2} \mathrm{O},-\mathrm{OH}} \quad \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{OH} \xrightarrow{\mathrm{PCC}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}-\mathrm{CHO}$

c. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CH}_{2} \xrightarrow[{\text { [2] } \mathrm{H}_{2} \mathrm{O},-\mathrm{OH}}]{[1] \mathrm{BH}_{3}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{OH} \xrightarrow[\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O}]{\mathrm{CrO}_{3}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}-\mathrm{COOH}$

12.67

12.68

Chapter 12-26
12.69
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2} \xrightarrow[{\text { [2] } \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{HO}^{-}}]{\text {[1] } 9-\mathrm{BBN} \text { or } \mathrm{BH}_{3}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow[\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O}]{\mathrm{CrO}_{3}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$

c.

d.

12.70
a. $\mathrm{HC} \equiv \mathrm{CH}$
 $\mathrm{HC} \equiv \mathrm{C}^{-} \xrightarrow{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}} \mathrm{HC} \equiv$ $\mathrm{HC} \equiv \mathrm{C}-\mathrm{CH}_{2} \mathrm{CH}_{3} \xrightarrow{\mathrm{NaH}}$ ${ }^{-} \mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2} \mathrm{CH}_{3}$

b.

c.

12.71 Determine which 2 C 's can come from $\mathrm{HC} \equiv \mathrm{CH}$ and two alkyl halides that are unhindered (1° or $\mathrm{CH}_{3} \mathrm{X}$).

1-phenyl-5-methylhexane

12.72

12.73

(3R,4S)-3,4-dichlorohexane

12.74

a.

b.

c.

Chapter 12-28
12.75

12.76

12.77

12.78
a.

b.

12.79 The two OH 's are added to opposite faces of the $\mathrm{C}=\mathrm{C}$, so anti addition occurs.

Chapter 12-30
12.80

12.81

Chapter 13 Mass Spectrometry and Infrared Spectroscopy

Chapter Review

Mass spectrometry (MS)

- Mass spectrometry measures the molecular weight of a compound (13.1A).
- The mass of the molecular ion $(\mathbf{M})=$ the molecular weight of a compound. Except for isotope peaks at $M+1$ and $M+2$, the molecular ion has the highest mass in a mass spectrum (13.1A).
- The base peak is the tallest peak in a mass spectrum (13.1A).
- A compound with an odd number of N atoms gives an odd molecular ion. A compound with an even number of N atoms (including zero) gives an even molecular ion (13.1B).
- Organic chlorides show two peaks for the molecular ion $(M$ and $M+2)$ in a 3:1 ratio (13.2).
- Organic bromides show two peaks for the molecular ion $(M$ and $M+2)$ in a $1: 1$ ratio (13.2).
- The fragmentation of radical cations formed in a mass spectrometer gives lower molecular weight fragments, often characteristic of a functional group (13.3).
- High-resolution mass spectrometry gives the molecular formula of a compound (13.4A).

Electromagnetic radiation

- The wavelength and frequency of electromagnetic radiation are inversely related by the following equations: $\lambda=c / v$ or $\nu=c / \lambda$ (13.5).
- The energy of a photon is proportional to its frequency; the higher the frequency the higher the energy: $\boldsymbol{E}=\boldsymbol{h} \boldsymbol{\nu}$ (13.5).

Infrared spectroscopy (IR, 13.6 and 13.7)

- Infrared spectroscopy identifies functional groups.
- IR absorptions are reported in wavenumbers:

$$
\text { wavenumber }=\tilde{v}=1 / \lambda
$$

- The functional group region from $\mathbf{4 0 0 0}-\mathbf{1 5 0 0} \mathbf{~ c m}^{-1}$ is the most useful region of an IR spectrum.
- $\mathrm{C}-\mathrm{H}, \mathrm{O}-\mathrm{H}$, and $\mathrm{N}-\mathrm{H}$ bonds absorb at high frequency, $\geq 2500 \mathrm{~cm}^{-1}$.
- As bond strength increases, the wavenumber of an absorption increases; thus triple bonds absorb at higher wavenumber than double bonds.

$$
\xrightarrow[\substack{\text { Increasing bond strength } \\ \text { Increasing } \tilde{v}}]{\substack{\mathrm{C}=\mathrm{C} \\ \sim 1650 \mathrm{~cm}^{-1}}} \stackrel{\mathrm{C} \equiv \mathrm{C}}{\sim 2250 \mathrm{~cm}^{-1}}
$$

- The higher the percent s-character, the stronger the bond, and the higher the wavenumber of an IR absorption.

Chapter 13-2

Practice Test on Chapter Review

1. a. Which compound has a molecular ion at 112 and a peak at $1720 \mathrm{~cm}^{-1}$ in its IR spectrum?
2.

2.

3.

4. Compounds (1) and (2) both fit these criteria.
5. Compounds (1), (2), and (3) all fit these criteria.
b. Which of the following compounds has peaks at 3300,3000 , and $2250 \mathrm{~cm}^{-1}$ in its IR spectrum?
1.

2.

3.

4. Compounds (1) and (2) have these peaks in their IR spectra.
5. Compounds (1), (2), and (3) all contain these peaks in their IR spectra.
c. What is the base peak in a mass spectrum?

1. the peak due to the radical cation formed when a molecule loses an electron
2. the tallest peak in the mass spectrum
3. the peak due to the fragment with the largest m / z ratio
4. Both (1) and (2) describe the base peak.
5. Statements (1), (2), and (3) describe the base peak.
d. Which compounds are possible structures for a molecule that has a molecular ion at 150 in its mass spectrum?

6.

3.

1.
4. Both (1) and (2) are possible structures.
5. Compounds (1), (2), and (3) are all possible structures.
e. Which compounds exhibit prominent $\mathrm{M}+2$ peaks in their mass spectra?
1.

2.

3.

4. Both (1) and (2) show $M+2$ peaks.
5. Compounds (1), (2), and (3) all show $M+2$ peaks.
2. Answer each question with the number that corresponds to one of the following regions of an IR spectrum.

$$
\begin{aligned}
& \text { 1. } 4000-2500 \mathrm{~cm}^{-1} \\
& \text { 2. } 2500-2000 \mathrm{~cm}^{-1} \\
& \text { 3. } 2000-1500 \mathrm{~cm}^{-1} \\
& \text { 4. }<1500 \mathrm{~cm}^{-1}
\end{aligned}
$$

a. This region is called the fingerprint region of an IR spectrum.
b. The OH group of 1-propanol absorbs in this region.
c. The $\mathrm{C}=\mathrm{N}$ of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{NCH}_{3}$ absorbs in this region.
d. An unsymmetrical $\mathrm{C} \equiv \mathrm{C}$ absorbs in this region.
e. An $s p$ hybridized $\mathrm{C}-\mathrm{H}$ bond absorbs in this region.
f. Ethyl benzoate $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ absorbs in all regions of the IR except this one.
3. Answer True (T) or False (F).
a. IR spectroscopy is useful for determining the molecular weight of a compound.
b. A C-H bond that absorbs at $3140 \mathrm{~cm}^{-1}$ is stronger than a $\mathrm{C}-\mathrm{H}$ bond that absorbs at $2950 \mathrm{~cm}^{-1}$.
c. A compound with a molecular ion at 109 contains a N atom.
d. A compound with a base peak at 57 must contain a N atom.
e. 2-Butyne shows an IR absorption at $2250 \mathrm{~cm}^{-1}$.
f. 1-Propanol shows an IR absorption at $3200-3600 \mathrm{~cm}^{-1}$.
g. An ether shows no IR absorptions at $3200-3600$ or $1700 \mathrm{~cm}^{-1}$.
h. In its mass spectrum, a compound that has a molecular ion with two peaks of approximately equal intensity at 124 and 126 contains chlorine.

Answers to Practice Test

1.a. 4	2.a. 4	3.a. F	e. F
b. 1	b. 1	b. T	f. T
c. 2	c. 3	c. T	g. T
d. 4	d. 2	d. F	h. F
e. 4	e. 1		

Chapter 13-4

Answers to Problems

13.1 The molecular ion formed from each compound is equal to its molecular weight.

$$
\begin{array}{cccc}
\text { a. } \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O} & \text { b. } \mathrm{C}_{10} \mathrm{H}_{20} & \text { c. } \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2} & \text { d. } \mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N} \\
\text { molecular weight }=58 & \text { molecular weight }=140 & \text { molecular weight }=136 & \text { molecular weight }=149 \\
\text { molecular ion }(\mathrm{m} / \mathrm{z})=58 & \text { molecular ion }(\mathrm{m} / \mathrm{z})=140 & \text { molecular ion }(\mathrm{m} / \mathrm{z})=136 & \text { molecular ion }(\mathrm{m} / \mathrm{z})=149
\end{array}
$$

13.2 Some possible formulas for each molecular ion:
a. Molecular ion at $72: \mathrm{C}_{5} \mathrm{H}_{12}, \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}, \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2}$
b. Molecular ion at 100: $\mathrm{C}_{8} \mathrm{H}_{4}, \mathrm{C}_{7} \mathrm{H}_{16}, \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}, \mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}$
c. Molecular ion at 73: $\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{~N}, \mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}_{3}$
13.3 To calculate the molecular ions you would expect for compounds with Cl , calculate the molecular weight using each of the two most common isotopes of $\mathrm{Cl}\left({ }^{35} \mathrm{Cl}\right.$ and $\left.{ }^{37} \mathrm{Cl}\right)$.
a. $\mathrm{C}_{4} \mathrm{H}_{9}{ }^{35} \mathrm{Cl}=92$
$\mathrm{C}_{4} \mathrm{H}_{9}{ }^{37} \mathrm{Cl}=94$
c. $\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{~N}=73$
Two peaks in 3:1 ratio at $\mathrm{m} / \mathrm{z} 92$ and 94
One peak at $\mathrm{m} / \mathrm{z} 73$
b. $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~F}=\mathbf{6 2}$

One peak at $m / z 62$
d. $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}=80$

One peak at $m / z 80$
13.4 Convert the ball-and-stick model to a skeletal structure and determine the molecular formula. Calculate the molecular weight using each of the two common isotopes for $\mathrm{Br}\left({ }^{79} \mathrm{Br}\right.$ and $\left.{ }^{81} \mathrm{Br}\right)$.

Br	$\mathrm{C}_{6} \mathrm{H}_{11}{ }^{79} \mathrm{Br}=162$ $\mathrm{C}_{6} \mathrm{H}_{11}{ }^{81} \mathrm{Br}=164$ Two peaks in a $1: 1$
$\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{Br}$	ratio at $\mathrm{m} / \mathrm{z} \quad 162$ and 164

13.5 After calculating the mass of the molecular ion, draw the structure and determine which $\mathrm{C}-\mathrm{C}$ bond is broken to form fragments of the appropriate mass-to-charge ratio.

13.6

This 3° carbocation is more stable than others that can form, and is therefore the most abundant fragment.

13.7

b.

13.8
a.

b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \longrightarrow+\mathrm{CH}_{2} \mathrm{OH} \quad$ c. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{+}=+\stackrel{+}{\mathrm{C}}=\mathrm{O}$
13.9 Use the exact mass values given in Table 13.1 to calculate the exact mass of each compound.
$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{3}$
mass: 151.0270

$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}$
mass: 151.0634
compound X

$\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~N}$
mass: 151.1362

Chapter 13-6
13.10

benzene
$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~m} / \mathrm{z}=78$

toluene $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~m} / \mathrm{z}=92$

$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~m} / \mathrm{z}=106$

GC-MS analysis:

Three peaks in the gas chromatogram.
Order of peaks: benzene, toluene, p-xylene, in order of increasing bp.
Molecular ions observed in the three mass spectra: 78, 92, 106.
13.11 Wavelength and frequency are inversely proportional. The higher frequency light will have a shorter wavelength.
a. Light having $\lambda=10^{2} \mathrm{~nm}$ has a higher v than light with $\lambda=10^{4} \mathrm{~nm}$.
b. Light having $\lambda=100 \mathrm{~nm}$ has a higher v than light with $\lambda=100 \mu \mathrm{~m}$.
c. Blue light has a higher v than red light.
13.12 The energy of a photon is proportional to its frequency, and inversely proportional to its wavelength.
a. Light having $v=10^{8} \mathrm{~Hz}$ is of higher energy than light having $v=10^{4} \mathrm{~Hz}$.
b. Light having $\lambda=10 \mathrm{~nm}$ is of higher energy than light having $\lambda=1000 \mathrm{~nm}$.
c. Blue light is of higher energy than red light.
13.13 Higher wavenumbers are proportional to higher frequencies and higher energies.
a. IR light with a wavenumber of $3000 \mathrm{~cm}^{-1}$ is higher in energy than IR light with a wavenumber of $1500 \mathrm{~cm}^{-1}$.
b. IR light having $\lambda=10 \mu \mathrm{~m}$ is higher in energy than IR light having $\lambda=20 \mu \mathrm{~m}$.
13.14 Stronger bonds absorb at a higher wavenumber. Bonds to lighter atoms (H versus D) absorb at higher wavenumber.
a.

stronger bond higher wavenumber
b. $\mathrm{CH}_{3}-\mathrm{H}$ or $\mathrm{CH}_{3}-\mathrm{D}$
lighter atom H higher wavenumber
13.15 Cyclopentane and 1-pentene are both composed of $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$ bonds, but 1-pentene also has a $\mathrm{C}=\mathrm{C}$ bond. This difference will give the IR of 1-pentene an additional peak at $1650 \mathrm{~cm}^{-1}$ (for the $\mathrm{C}=\mathrm{C}$). 1-Pentene will also show $\mathrm{C}-\mathrm{H}$ absorptions for $s p^{2}$ hybridized $\mathrm{C}-\mathrm{H}$ bonds at $3150-3000 \mathrm{~cm}^{-1}$.
13.16 Look at the functional groups in each compound below to explain how each IR is different.

$\mathrm{CH}_{3} \mathrm{OCH}=\mathrm{CH}_{2}$
B
$\mathrm{C}=\mathrm{C}$ peak at $1650 \mathrm{~cm}^{-1}$
O-H peak at $3200-3600 \mathrm{~cm}^{-1}$
Csp ${ }^{2}-\mathrm{H}$ at $3150-3000 \mathrm{~cm}^{-1}$
13.17 a. Compound A has peaks at $\sim 3150\left(s p^{2}\right.$ hybridized C-H), 3000-2850 ($s p^{3}$ hybridized C-H), and $1650(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$.
b. Compound B has a peak at $3000-2850\left(s p^{3}\right.$ hybridized C-H) cm^{-1}.
13.18 All compounds show an absorption at $3000-2850 \mathrm{~cm}^{-1}$ due to the $s p^{3}$ hybridized C-H bonds. Additional peaks in the functional group region for each compound are shown.
a.

no additional peaks
b.

$\mathrm{O}-\mathrm{H}$ bond at $3600-3200 \mathrm{~cm}^{-1}$
c.

$$
\begin{aligned}
& \mathrm{Csp} 2-\mathrm{H} \text { at } 3150-3000 \mathrm{~cm}^{-1} \\
& \mathrm{C}=\mathrm{C} \text { bond } \text { at } 1650 \mathrm{~cm}^{-1}
\end{aligned}
$$

d.

$\mathrm{C}=\mathrm{O}$ bond at $\sim 1700 \mathrm{~cm}^{-1}$
e.

13.19

13.20 Possible structures are (a) $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}$ and (c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{3}$. Compounds (b) and (d) also have an OH group that would give a strong absorption at $\sim 3600-3200 \mathrm{~cm}^{-1}$, which is absent in the IR spectrum of \mathbf{X}, thus excluding them as possibilities.

13.21

a. Hydrocarbon with a molecular ion at $m / z=68$

IR absorptions at $3310 \mathrm{~cm}^{-1}=\mathrm{C} s p-\mathrm{H}$ bond $3000-2850 \mathrm{~cm}^{-1}=\mathrm{C} s p^{3}-\mathrm{H}$ bonds $2120 \mathrm{~cm}^{-1}=\mathrm{C} \equiv \mathrm{C}$ bond
Molecular formula: $\mathrm{C}_{5} \mathrm{H}_{8}$

b. Compound with C, H, and O with a molecular ion at $m / z=60$
IR absorptions at $3600-3200 \mathrm{~cm}^{-1}=\mathrm{O}-\mathrm{H}$ bond $3000-2850 \mathrm{~cm}^{-1}=\mathrm{C} s p^{3}-\mathrm{H}$ bonds Molecular formula: $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$

Chapter 13-8
13.22
a.

$\mathrm{Cs} \mathrm{p}^{2}-\mathrm{H}$ at $3000-3150 \mathrm{~cm}^{-1}$
Csp ${ }^{3}-\mathrm{H}$ at $2850-3000 \mathrm{~cm}^{-1}$ $\mathrm{C}=\mathrm{C}$ at $1650 \mathrm{~cm}^{-1}$
b.

O-H at 3200-3600 cm^{-1} Csp ${ }^{2}-\mathrm{H}$ at $3000-3150 \mathrm{~cm}^{-1}$
Csp ${ }^{3}-\mathrm{H}$ at $2850-3000 \mathrm{~cm}^{-1}$
$\mathrm{C}=\mathrm{C}$ at $1650 \mathrm{~cm}^{-1}$
13.23

13.24
a.

molecular formula: $\mathrm{C}_{6} \mathrm{H}_{6}$ molecular ion (m / z): 78
c.

molecular formula: $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$ molecular ion (m / z): 86
e. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}(\mathrm{Br}) \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
molecular formula: $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{Br}$ molecular ions (m / z): 192, 194
b.

d.

molecular formula: $\mathrm{C}_{10} \mathrm{H}_{16}$ molecular ion (m / z): 136
molecular formula: $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{Cl}$ molecular ions (m / z): 106, 108
13.25

13.26 Examples are given for each molecular ion.
a. molecular ion 102: $\mathrm{C}_{8} \mathrm{H}_{6}, \mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}, \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}, \mathrm{C}_{5} \mathrm{H}_{14} \mathrm{~N}_{2}$
b. molecular ion 98: $\mathrm{C}_{8} \mathrm{H}_{2}, \mathrm{C}_{7} \mathrm{H}_{14}, \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}, \mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{2}$
c. molecular ion 119: $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{3}$
d. molecular ion 74: $\mathrm{C}_{6} \mathrm{H}_{2}, \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}, \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$
13.27 Likely molecular formula, $\mathrm{C}_{8} \mathrm{H}_{16}$ (one degree of unsaturation-one ring or one π bond).

$$
\text { Four structures with } m / z=112
$$

13.28

$\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{Cl}$
molecular weight: 122, 124 should show 2 peaks for the molecular ion with a 3:1 ratio

Mass spectrum [1]

$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}$
molecular weight: 122

A
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Br}$
molecular weight: 122, 124 should show 2 peaks for the molecular ion with a 1:1 ratio

Mass spectrum [3]

13.29

or

or

or
 or

Possible structures
$\mathrm{C}_{7} \mathrm{H}_{12}$
(exact mass 96.0940)
13.30
a.

b.

(from cleavage of bond [1])
(from cleavage of bond [2])

Chapter 13-10
13.31

b.

$m / z=68$

Cleave bond [3].

13.32

$$
\begin{gathered}
\text { This is ketone A since } \alpha \\
\text { cleavage gives a fragment } \\
\text { with } m / z \text { of } 99 \text {. }
\end{gathered}
$$

13.33 One possible structure is drawn for each set of data:
a. A compound that contains a benzene ring and has a molecular ion at $m / z=107$

b. A hydrocarbon that contains only $s p^{3}$ hybridized carbons and a molecular ion at $m / z=84$

c. A compound that contains a carbonyl group and gives a molecular ion at $m / z=114$

d. A compound that contains $\mathrm{C}, \mathrm{H}, \mathrm{N}$, and O and has an exact mass for the molecular ion at 101.0841

13.34 Use the values given in Table 13.1 to calculate the exact mass of each compound. $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}_{2}$ (exact mass 153.0790) is the correct molecular formula.
13.35 Two isomers such as $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$ have the same molecular formulas and therefore give the same exact mass, so they are not distinguishable by their exact mass spectra.
13.36 Alpha cleavage of a 1° alcohol $\left(\mathrm{RCH}_{2} \mathrm{OH}\right)$ forms an alkyl radical $(\mathrm{R} \bullet)$ and a resonancestabilized carbocation with $m / z=31$.

$$
+\mathrm{CH}_{2} \mathrm{OH} \longleftrightarrow \mathrm{CH}_{2}=\stackrel{+}{\mathrm{O}} \mathrm{H} \quad m / z=31
$$

13.37 An ether fragments by α cleavage because the resulting carbocation is resonance stabilized.

13.38

a.

b.
 or $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{NCH}_{3}$
stronger bond higher \widetilde{v} absorption
c.

stronger bond higher $\overline{\text { vi absorption }}$
13.39 Locate the functional groups in each compound. Use Table 13.2 to determine what IR absorptions each would have.
a. $\square \mathrm{C}=\mathrm{CH}$

Csp-H at $3300 \mathrm{~cm}^{-1}$ Csp ${ }^{3}-\mathrm{H}$ at 2850-3000 cm^{-1} $\mathrm{C}-\mathrm{C}$ triple bond at $2250 \mathrm{~cm}^{-1}$
c.

d.

$\mathrm{O}-\mathrm{H}$ at $>3000 \mathrm{~cm}^{-1}$ $\mathrm{Csp}{ }^{2}-\mathrm{H}$ at $3000-3150 \mathrm{~cm}^{-1}$ $\mathrm{C}=\mathrm{O}$ at $\sim 1700 \mathrm{~cm}^{-1}$ phenyl group at $1600,1500 \mathrm{~cm}^{-1}$
[The OH of the RCOOH is even broader than the OH of an alcohol ($3500-2500 \mathrm{~cm}^{-1}$), as we will learn in Chapter 19.

O-H at 3200-3600 cm^{-1} Csp ${ }^{3}-\mathrm{H}$ at $2850-3000 \mathrm{~cm}^{-1}$
13.40
a.
 $\mathrm{C}=\mathrm{C}$ bond $1650 \mathrm{~cm}^{-1}$
Csp ${ }^{2}-\mathrm{H}$ at $3150-3000 \mathrm{~cm}^{-1}$
and
$\mathrm{HC} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
$\mathrm{C} \equiv \mathrm{C}$ bond
$2250 \mathrm{~cm}^{-1}$
Csp-H at $3300 \mathrm{~cm}^{-1}$
b.

no $\mathrm{O}-\mathrm{H}$ bond
[See note on OH in Answer 13.39d.]

Chapter 13-12

e. $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCH}_{3}$
no $\mathrm{C} \equiv \mathrm{C}$ absorption

due to symmetry \quad| $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}$ |
| :---: |
| |
| |
| |
| |
| |
| |
| |
| |
| $\mathrm{Csp}-\mathrm{H}$ bond |
| $3300 \mathrm{~cm}^{-1}$ |
| bond at $\sim 2250 \mathrm{~cm}^{-1}$ |

f. $\mathrm{HC} \equiv \mathrm{CCH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}$ and $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{C} \equiv \mathrm{N}$

Csp-H bond
$3300 \mathrm{~cm}^{-1}$
d.
 and

no $\mathrm{C}=\mathrm{O}$ bond
$\mathrm{C}=\mathrm{O}$ bond
$\sim 1700 \mathrm{~cm}^{-1}$
13.41 The IR absorptions above $1500 \mathrm{~cm}^{-1}$ are different for each of the narcotics.

13.42 Look for a change in functional groups from starting material to product to see how IR could be used to determine when the reaction is complete.
a.

Loss of the $\mathrm{C}=\mathrm{C}$ will be visible in the IR by disappearance of the peak at $1650 \mathrm{~cm}^{-1}$.
b.

Loss of the $\mathrm{O}-\mathrm{H}$ group will be visible in the IR by disappearance of the peak at $3200-3600 \mathrm{~cm}^{-1}$ and appearance of the $\mathrm{C}=\mathrm{O}$ at $\sim 1700 \mathrm{~cm}^{-1}$.
c.

Loss of the $\mathrm{C}=\mathrm{C}$ will be visible in the IR by disappearance of the peak at $1650 \mathrm{~cm}^{-1}$ and appearance of the $\mathrm{C}=\mathrm{O}$ at $\sim 1700 \mathrm{~cm}^{-1}$.
d.

Loss of the $\mathrm{O}-\mathrm{H}$ will be visible in the IR by disappearance of the peak at $3200-3600 \mathrm{~cm}^{-1}$.
13.43 In addition to $\mathrm{Csp}{ }^{3}-\mathrm{H}$ at $\sim 3000-2850 \mathrm{~cm}^{-1}$:

Spectrum [1]:

```
CH2}=\textrm{C}(\mp@subsup{\textrm{CH}}{3}{})\mp@subsup{\textrm{CH}}{2}{}\mp@subsup{\textrm{CH}}{2}{}\mp@subsup{\textrm{CH}}{2}{}\mp@subsup{\textrm{CH}}{3}{}(\mathbf{B}
\(\mathrm{C}=\) C peak at \(1650 \mathrm{~cm}^{-1}\)
\(\mathrm{Csp}{ }^{2}-\mathrm{H}\) at \(\sim 3150 \mathrm{~cm}^{-1}\)
```

Spectrum [3]:
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOCH}\left(\mathrm{CH}_{3}\right)_{2}(\mathbf{D})$
No other peaks above $1500 \mathrm{~cm}^{-1}$

Spectrum [5]:

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}(\mathbf{A})$

OH at $\sim 3500-2500 \mathrm{~cm}^{-1}$
$\mathrm{C}=\mathrm{O}$ at $\sim 1700 \mathrm{~cm}^{-1}$

Spectrum [2]:
$\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{COH}(\mathbf{F})$
OH at $3600-3200 \mathrm{~cm}^{-1}$

Spectrum [4]:

(C)
$\mathrm{Csp} p^{2}-\mathrm{H}$ at $\sim 3150 \mathrm{~cm}^{-1}$
Phenyl peaks at 1600 and $1500 \mathrm{~cm}^{-1}$

Spectrum [6]:

$\mathrm{CH}_{3} \mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3}(\mathbf{E})$

$\mathrm{C}=\mathrm{O}$ at $\sim 1700 \mathrm{~cm}^{-1}$

13.44

a. Compound with a molecular ion at $m / z=72$

IR absorption at $1725 \mathrm{~cm}^{-1}=\mathrm{C}=\mathrm{O}$ bond
Molecular formula: $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$

b. Compound with a molecular ion at $m / z=55$ The odd molecular ion means an odd number of N's present. Molecular formula: $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}$
c. Compound with a molecular ion at $m / z=74$ IR absorption at $3600-3200 \mathrm{~cm}^{-1}=\mathrm{O}-\mathrm{H}$ bond Molecular formula: $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$

IR absorption at $2250 \mathrm{~cm}^{-1}=\mathrm{C} \equiv \mathrm{N}$ bond $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{N}$

13.45

Chiral hydrocarbon with a molecular ion at $m / z=82$
Molecular formula: $\mathrm{C}_{6} \mathrm{H}_{10}$
IR absorptions at $3300 \mathrm{~cm}^{-1}=\mathrm{C} s p-\mathrm{H}$ bond

$$
3000-2850 \mathrm{~cm}^{-1}=\mathrm{C} s p^{3}-\mathrm{H} \text { bonds }
$$

$$
2250 \mathrm{~cm}^{-1}=\mathrm{C} \equiv \mathrm{C} \text { bond }
$$

Chapter 13-14
13.46 The chiral compound \mathbf{Y} has a strong absorption at $2970-2840 \mathrm{~cm}^{-1}$ in its IR spectrum due to $s p^{3}$ hybridized C-H bonds. The two peaks of equal intensity at 136 and 138 indicate the presence of a Br atom. The molecular formula is $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$. Only one constitutional isomer of this molecular formula has a stereogenic center:

13.47 The molecular ion of 192 suggests $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$ as a possible molecular formula. IR absorption at $1721 \mathrm{~cm}^{-1}$ is due to a $\mathrm{C}=\mathrm{O}$, and the absorptions around $3000 \mathrm{~cm}^{-1}$ are due to $\mathrm{C}_{s p^{2}-}-\mathrm{H}$ and $\mathrm{C}_{s p^{3}}-\mathrm{H}$. The compound is an ester, formed in the following manner.

13.48

13.49

13.50 The molecular ion of 144 suggests $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}$ as a possible molecular formula for \mathbf{X}. The IR absorption at $1739 \mathrm{~cm}^{-1}$ is due to a $\mathrm{C}=\mathrm{O}$, and the absorptions at less than $3000 \mathrm{~cm}^{-1}$ are due to $\mathrm{C} s p^{3}-\mathrm{H}$.

13.51

$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$
$m / z=100$
IR absorption at $2962 \mathrm{~cm}^{-1}=\mathrm{C}_{s p^{3}-\mathrm{H} \text { bonds }}$
$1718 \mathrm{~cm}^{-1}=\mathrm{C}=\mathrm{O}$ bond
fragments:

α cleavage product $m / z=43$
The fragment at $m / z=57$ could be due to $\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)^{+}$or $\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}\right)^{+}$.
13.52

IR absorptions at 3373 and $3290 \mathrm{~cm}^{-1}=\mathrm{N}-\mathrm{H}$ $3062 \mathrm{~cm}^{-1}=\mathrm{C}_{s p^{2}-\mathrm{H}}$ bonds $2920 \mathrm{~cm}^{-1}=\mathrm{Csp}^{3}-\mathrm{H}$ bonds $1600 \mathrm{~cm}^{-1}$ = benzene ring
The odd molecular ion indicates the presence of a N atom.

$$
\begin{aligned}
\text { IR absorption at } 3068 \mathrm{~cm}^{-1} & =\mathrm{C} s p^{2}-\mathrm{H} \text { bonds on ring } \\
2850 \mathrm{~cm}^{-1} & =\mathrm{C} s p^{3}-\mathrm{H} \text { bond } \\
2820 \mathrm{~cm}^{-1} \text { and } 2736 \mathrm{~cm}^{-1} & =\mathrm{C}-\mathrm{H} \text { of RCHO (Appendix E) } \\
1703 \mathrm{~cm}^{-1} & =\mathrm{C}=\mathrm{O} \text { bond } \\
1600 \mathrm{~cm}^{-1} & =\text { aromatic ring }
\end{aligned}
$$

13.53

Possible structures of \mathbf{P} :

13.54 The mass spectrum has a molecular ion at 71. The odd mass suggests the presence of an odd number of N atoms; likely formula, $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~N}$. The IR absorption at $\sim 3300 \mathrm{~cm}^{-1}$ is due to $\mathrm{N}-\mathrm{H}$ and the $3000-2850 \mathrm{~cm}^{-1}$ is due to $s p^{3}$ hybridized $\mathrm{C}-\mathrm{H}$ bonds.

Chapter 13-16
13.55 Because the carbonyl absorption of an amide is at lower wavenumber than the carbonyl absorption of an ester, the $\mathrm{C}=\mathrm{O}$ of the amide must be weaker and have more single bond character. This can be explained by resonance. Although both an ester and amide are resonance stabilized, the N atom of the amide is more basic, making it more willing to donate its electron pair.

This form contributes more to the hybrid, so there is more single bond character.

This form contributes less to the hybrid.

Since the amide carbonyl has more single bond character, the bond is weaker and it absorbs at lower wavenumber.
13.56 The α, β-unsaturated carbonyl compound has three resonance structures, two of which place a single bond between the C and O atoms. This means that the $\mathrm{C}-\mathrm{O}$ bond has partial single bond character, making it weaker than a regular $\mathrm{C}=\mathrm{O}$ bond, and moving the absorption to lower wavenumber.

13.57 If a ketone carbonyl absorbs at lower wavenumber than an aldehyde carbonyl, the ketone carbonyl is weaker and has more single bond character. This can be explained by the fact that R groups are electron donating and stabilize an adjacent $(+)$ charge.

As a result, the charge-separated resonance form of a ketone, which contains a $\mathrm{C}-\mathrm{O}$ single bond, contributes more to the hybrid of a ketone, making the $\mathrm{C}=\mathrm{O}$ weaker and shifting the absorption to lower wavenumber.

13.58

a, b.

Chapter 14 Nuclear Magnetic Resonance Spectroscopy

Chapter Review

${ }^{1}$ H NMR spectroscopy

[1] The number of signals equals the number of different types of protons (14.2).

[2] The position of a signal (its chemical shift) is determined by shielding and deshielding effects.

- Shielding shifts an absorption upfield; deshielding shifts an absorption downfield.
- Electronegative atoms withdraw electron density, deshield a nucleus, and shift an absorption downfield (14.3).

- Loosely held π electrons can either shield or deshield a nucleus. Protons on benzene rings and double bonds are deshielded and absorb downfield, whereas protons on triple bonds are shielded and absorb upfield (14.4).

[3] The area under an NMR signal is proportional to the number of absorbing protons (14.5).
[4] Spin-spin splitting tells about nearby nonequivalent protons (14.6-14.8).
- Equivalent protons do not split each other's signals.
- A set of n nonequivalent protons on the same carbon or adjacent carbons split an NMR signal into $n+1$ peaks.
- OH and NH protons do not cause splitting (14.9).
- When an absorbing proton has two sets of nearby nonequivalent protons that are equivalent to each other, use the $n+1$ rule to determine splitting.
- When an absorbing proton has two sets of nearby nonequivalent protons that are not equivalent to each other, the number of peaks in the NMR signal $=(n+1)(m+1)$. In flexible alkyl chains, peak overlap often occurs, resulting in $n+m+1$ peaks in an NMR signal.
${ }^{13}$ C NMR spectroscopy (14.11)
[1] The number of signals equals the number of different types of carbon atoms. All signals are single lines.
[2] The relative position of ${ }^{13} \mathrm{C}$ signals is determined by shielding and deshielding effects.
- Carbons that are $s p^{3}$ hybridized are shielded and absorb upfield.
- Electronegative elements (N, O, and X) shift absorptions downfield.
- The carbons of alkenes and benzene rings absorb downfield.
- Carbonyl carbons are highly deshielded, and absorb farther downfield than other carbon types.

Practice Test on Chapter Review

1. a. Which of the following statements is true about ${ }^{1} \mathrm{H}$ NMR absorptions?
2. A signal that occurs at 1800 Hz on a 300 MHz NMR spectrometer occurs at 3000 Hz on a 500 MHz NMR spectrometer.
3. A signal that occurs at 3.3 ppm on a 60 MHz NMR absorbs at 198 Hz upfield from TMS.
4. A signal that occurs at 600 Hz is downfield from a signal that occurs at 800 Hz .
5. Statements (1) and (2) are both true.
6. Statements (1), (2), and (3) are all true.
b. Which of the following statements is true about ${ }^{1} \mathrm{H}$ NMR spectroscopy?
7. Electronegative elements shield a nucleus so an absorption shifts downfield.
8. A triplet is due to a proton that has four adjacent nonequivalent protons.
9. Circulating π electrons create a magnetic field that reinforces the applied field in the vicinity of the protons in benzene.
10. Statements (1) and (2) are both true.
11. Statements (1), (2), and (3) are all true.
12. How many different types of protons does each of the following molecules contain?
a.

c. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCH}_{3}$
e.

g.

b.

d.

f.

h.

13. Into how many peaks will each of the circled protons be split in a proton NMR spectrum?
a.

c.

e.

g.

b.

d.

f.

14. How many lines are presents in the ${ }^{13} \mathrm{C}$ NMR spectrum of each compound?
a.

c.

e.

b.

d.

f.

15. With reference to the ${ }^{1} \mathrm{H}$ NMR absorptions in the following compound, (a) which proton absorbs farthest upfield; (b) which proton absorbs farthest downfield?

16. With reference to the ${ }^{13} \mathrm{C}$ NMR absorptions in the following compound, (a) which carbon absorbs farthest downfield; (b) which carbon absorbs farthest upfield?

Answers to Practice Test

1. a. 1
2. a. 5
3. a. 8
b. 3
b. 5
b. 3
4. a. 6
b. 4
c. 6
c. 4
c. 7
d. 5
d. 4
d. 4
e. 4
e. 4
e. 4
f. 5
f. 3
f. 5
g. 3
g. 8
h. 9

Answers to Problems

14.1 Use the formula $\delta=$ [observed chemical shift $(\mathrm{Hz}) / v$ of the $\mathrm{NMR}(\mathrm{MHz})]$ to calculate the chemical shifts.
a. CH_{3} protons:
$\delta=[1715 \mathrm{~Hz}] /[500 \mathrm{MHz}]$
OH proton:
$\delta=[1830 \mathrm{~Hz}] /[500 \mathrm{MHz}]$
b. The positive direction of the δ scale is downfield from TMS. The CH_{3} protons absorb upfield from the OH proton.
14.2 Calculate the chemical shifts as in Answer 14.1.
a. one signal:
second signal:
$\delta=[1017 \mathrm{~Hz}] /[300 \mathrm{MHz}] \quad \delta=[1065 \mathrm{~Hz}] /[300 \mathrm{MHz}]$ $=3.55 \mathrm{ppm}$
b. one signal:
$3.39=[x \mathrm{~Hz}] /[500 \mathrm{MHz}]$ $x=1695 \mathrm{~Hz}$
second signal:
$3.55=[x \mathrm{~Hz}] /[500 \mathrm{MHz}]$
$x=1775 \mathrm{~Hz}$

Chapter 14-4
14.3 To determine if two H's are equivalent replace each by an atom X. If this yields the same compound or mirror images, the two H's are equivalent. Each kind of H will give one NMR signal.
a. $\mathrm{CH}_{3} \mathrm{CH}_{3}$
1 kind of H
1 NMR signal
b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$
2 kinds of H 's 2 NMR signals
c. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
2 kinds of $\mathrm{H}^{\prime} \mathrm{s}$ 2 NMR signals
e. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
4 kinds of H 's
4 NMR signals
g. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{Cl}$
8 kinds of H 's 8 NMR signals
d. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}$
2 kinds of H's
2 NMR signals
f. $\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
4 kinds of H 's
4 NMR signals
h. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
4 kinds of H 's
4 NMR signals
14.4 Draw in all of the H's and compare them. If two H's are cis and trans to the same group, they are equivalent.
a.

2 NMR signals
b.

4 NMR signals
c.

3 NMR signals
14.5 If replacement of H with X yields enantiomers, the protons are enantiotopic. If replacement of H with X yields diastereomers, the protons are diastereotopic. In general, if the compound has one stereogenic center, the protons in a CH_{2} group are diastereotopic.

14.6 The two protons of a CH_{2} group are different from each other if the compound has one stereogenic center. Replace one proton with X and compare the products.
a. The stereogenic center makes the H's in the CH_{2} group diastereotopic and therefore different from each other.

stereogenic

5 NMR signals
b.

c.

14.7 Decreased electron density deshields a nucleus and the absorption goes downfield. Absorption also shifts downfield with increasing alkyl substitution.
a. $\mathrm{FCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$

F is more electronegative than Cl . The CH_{2} group adjacent to the F is more deshielded and the H's will absorb farther downfield.
b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3}$

The CH_{2} group adjacent to the O will absorb farther downfield because it is closer to the electronegative O atom.
c. $\mathrm{CH}_{3} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}$ The CH_{3} group bonded to the O atom will absorb farther downfield.

14.8

a.

3 types of protons:

$$
\mathrm{H}_{\mathrm{b}}<\mathrm{H}_{\mathrm{c}}<\mathrm{H}_{\mathrm{a}}
$$

b.

3 types of protons:
$\mathrm{H}_{\mathrm{c}}<\mathrm{H}_{\mathrm{a}}<\mathrm{H}_{\mathrm{b}}$

3 types of protons:
$\mathrm{H}_{\mathrm{c}}<\mathrm{H}_{\mathrm{a}}<\mathrm{H}_{\mathrm{b}}$
14.9
a.

H_{c} protons are shielded because they are bonded to an $s p^{3} \mathrm{C}$.
H_{a} is shielded because it is bonded to an $s p \mathrm{C}$.
H_{b} protons are deshielded because they are bonded to an $s p^{2} \mathrm{C}$.

$$
\mathrm{H}_{\mathrm{c}}<\mathrm{H}_{\mathrm{a}}<\mathrm{H}_{\mathrm{b}}
$$

H_{c} protons are shielded because they are bonded to an $s p^{3}$ C.
H_{a} protons are deshielded slightly because the CH_{3} group is bonded to a $\mathrm{C}=\mathrm{O}$.
H_{b} protons are deshielded because the CH_{2} group is bonded to an O atom.

$$
\mathrm{H}_{\mathrm{c}}<\mathrm{H}_{\mathrm{a}}<\mathrm{H}_{\mathrm{b}}
$$

14.10 An integration ratio of $2: 3$ means that there are two types of hydrogens in the compound, and that the ratio of one type to another type is 2:3.
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$
2 types of H's
3:2-YES
b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$ 2 types of H's 6:2 or 3:1-no
c. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$
2 types of H's
6:4 or 3:2 - YES
d. $\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3}$ 2 types of H's 6:4 or 3:2-YES

Chapter 14-6
14.11 To determine how many protons give rise to each signal:

- Divide the total number of integration units by the total number of protons to find the number of units per H .
- Divide each integration value by this value and round to the nearest whole number.

$$
\begin{array}{ll}
\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{2} & \\
\text { total number of integration units }=14+12+44=70 \text { units } & \text { Signal }[\mathrm{A}]=14 / 5=3 \mathbf{H} \\
\text { total number of protons }=14 \mathrm{H} \text { 's } & \text { Signal }[B]=12 / 5=2 \mathbf{H} \\
70 \text { units } / 14 \mathrm{H} \text { 's }=5 \text { units per } \mathbf{H} & \text { Signal }[\mathrm{C}]=44 / 5=9 \mathbf{H}
\end{array}
$$

14.12

14.13 To determine the splitting pattern for a molecule:

- Determine the number of different kinds of protons.
- Nonequivalent protons on the same C or adjacent C's split each other.
- Apply the $n+1$ rule.
a.

H_{a} : 3 peaks - triplet
$H_{b}: 4$ peaks - quartet
b.

H_{a} : 1 peak - singlet
H_{b} : 3 peaks - triplet H_{c} : 3 peaks - triplet
d.

$\mathrm{H}_{\mathrm{a}}: 2$ peaks - doublet
H_{b} : 2 peaks - doublet
e.

$\mathrm{H}_{\mathrm{a}}: 2$ peaks - doublet H_{b} : 2 peaks - doublet
f. $\mathrm{ClCH}_{2} \mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{2}$

$\mathrm{H}_{\mathrm{a}}: 2$ peaks - doublet
H_{b} : 3 peaks - triplet
14.14 Use the directions from Answer 14.13.
a.

H_{a} : quartet
H_{b} : triplet
2 NMR signals
c.

d.

H_{a} : triplet H_{b} : doublet
H_{c} : singlet 3 NMR signals
$14.15 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$

There are two kinds of protons, and they can split each other. The CH_{3} signal will be split by the CH_{2} protons into $2+1=3$ peaks. It will be upfield from the CH_{2} protons since it is farther from the Cl . The CH_{2} signal will be split by the CH_{3} protons into $3+1=4$ peaks. It will be downfield from the CH_{3} protons since the CH_{2} protons are closer to the Cl . The ratio of integration units will be 3:2.
14.16
a. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCO}_{2} \mathrm{CH}_{3}$
split by 6 equivalent H's
$6+1=7$ peaks
b.

3 peaks
H_{c} : split by 4 equivalent H's 5 peaks
H_{b} : split by 2 sets of H's $(3+1)(2+1)=12$ peaks (maximum)

H_{a} : split by 1 H
2 peaks
H_{b} : split by 2 sets of H's $(1+1)(2+1)=6$ peaks
d.

H_{a} : split by 2 different H's $(1+1)(1+1)=4$ peaks H_{b} : split by 2 different H's $(1+1)(1+1)=4$ peaks
H_{c} : split by 2 different H's $(1+1)(1+1)=4$ peaks Since this is a flexible alkyl chain, the signal due to H_{b} will have peak overlap, and
$3+2+1=6$ peaks will likely be visible.

14.17

a.

H_{a} : singlet at $\sim 3 \mathrm{ppm}$ H_{b} : quartet at $\sim 3.5 \mathrm{ppm}$ H_{c} : triplet at $\sim 1 \mathrm{ppm}$

b.

H_{a} : triplet at $\sim 1 \mathrm{ppm}$ H_{b} : quartet at $\sim 2 \mathrm{ppm}$ H_{c} : septet at $\sim 3.5 \mathrm{ppm}$ H_{d} : doublet at $\sim 1 \mathrm{ppm}$
c.

H_{a} : singlet at $\sim 3 \mathrm{ppm}$
H_{b} : triplet at $\sim 3.5 \mathrm{ppm}$
H_{c} : quintet at $\sim 1.5 \mathrm{ppm}$

H_{a} : triplet at $\sim 1 \mathrm{ppm}$
H_{b} : multiplet (8 peaks) at $\sim 2.5 \mathrm{ppm}$
H_{c} : triplet at $\sim 5 \mathrm{ppm}$

Chapter 14-8

14.18

trans-1,3-dichloropropene

Splitting diagram for H_{b}
1 trans H_{a} proton splits H_{b} into $1+1=2$ peaks a doublet
$2 \mathrm{H}_{\mathrm{c}}$ protons split H_{b} into $2+1=3$ peaks
Now it's a doublet of triplets.
14.19

$\mathrm{H}_{\mathrm{a}}: 1.75 \mathrm{ppm}$, doublet, $3 \mathrm{H}, J=6.9 \mathrm{~Hz}$
$\mathrm{H}_{\mathrm{b}}: 5.89 \mathrm{ppm}$, quartet, $1 \mathrm{H}, J=6.9 \mathrm{~Hz}$

B
signal at 4.16 ppm , singlet, 2 H signal at 5.42 ppm , doublet, $1 \mathrm{H}, J=1.9 \mathrm{~Hz}$ signal at 5.59 ppm , doublet, $1 \mathrm{H}, J=1.9 \mathrm{~Hz}$
14.20 Remember that OH (or NH) protons do not split other signals, and are not split by adjacent protons.

3 NMR signals

3 NMR signals
14.21

A
H_{a} : doublet at ~ 1.4 due to the CH_{3} group, split into two peaks by one adjacent nonequivalent $\mathrm{H}\left(\mathrm{H}_{\mathrm{c}}\right)$.
H_{b} : singlet at ~ 2.7 due to the OH group. OH protons are not split by nor do they split adjacent protons.
H_{c} : quartet at ~ 4.7 due to the CH group, split into four peaks by the adjacent CH_{3} group.
H_{d} : Five protons on the benzene ring.
14.22

H_{a} : one adjacent nonequivalent H , so two peaks
H_{b} : one adjacent nonequivalent H , so two peaks
$\mathrm{H}_{\mathrm{c}}: \mathrm{H}_{\mathrm{c}}$ is located on a N atom so there is no splitting and it appears as one peak.
H_{d} : H_{d} has one nonequivalent H on the same carbon and one on an adjacent carbon, so it is split into $(1+1)(1+1)=4$ peaks (a doublet of doublets).
14.23 Use these steps to propose a structure consistent with the molecular formula, IR, and NMR data.

- Calculate the degrees of unsaturation.
- Use the IR data to determine what types of functional groups are present.
- Determine the number of different types of protons.
- Calculate the number of H's giving rise to each signal.
- Analyze the splitting pattern and put the molecule together.
- Use the chemical shift information to check the structure.
- Molecular formula $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}$
$2 n+2=2(7)+2=16$
$16-14=2 / 2=1$ degree of unsaturation
1π bond or 1 ring
- IR peak at $1740 \mathrm{~cm}^{-1}$
$\mathbf{C = O}$ absorption is around $1700 \mathrm{~cm}^{-1}$ (causes the degree of unsaturation). No signal at 3200-3600 cm^{-1} means there is no $\mathrm{O}-\mathrm{H}$ bond.
- NMR data: absorption ppm integration

- 3 kinds of H's
- number of H's per signal
total integration units: $26+10+6=42$ units
42 units / 14 H's $=3$ units per H
- look at the splitting pattern

The singlet $(9 \mathrm{H})$ is likely from a tert-butyl group:

The CH_{3} and CH_{2} groups split each other: $\mathrm{CH}_{3}-\mathrm{CH}_{2}-$

- Join the pieces together.

or

Pick this structure due to the chemical shift data.
The CH_{2} group is shifted downfield (4 ppm), so it is close to the electron-withdrawing O .

Chapter 14-10

14.24

- Molecular formula: $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}>$ Calculate degrees of unsaturation

$$
\begin{aligned}
& 2 n+2=2(3)+2=8 \\
& 8-8=\mathbf{0} \text { degrees of unsaturation }
\end{aligned}
$$

- IR peak at $3200-3600 \mathrm{~cm}^{-1}>$ Peak at $3200-3600 \mathrm{~cm}^{-1}$ is due to an $\mathbf{O}-\mathbf{H}$ bond.
- NMR data:
- doublet at $\sim 1.2(6 \mathrm{H})$
- singlet at $\sim 2.2(1 \mathrm{H})$
- septet at $\sim 4(1 \mathrm{H})$

3 types of H 's
septet from $1 \mathrm{H} \longleftarrow$ split by 6 H 's
\rightarrow singlet from 1 H
doublet from 6 H 's \longleftarrow split by 1 H
from the $\mathrm{O}-\mathrm{H}$ proton
> Put information together:

CH_{3}
$\mathrm{HO}-\mathrm{C}-\mathrm{CH}_{3}$
1
H

14.25 Identify each compound from the ${ }^{1} H$ NMR data.
a.

b.

14.26 Each different kind of carbon atom will give a different ${ }^{13} \mathrm{C}$ NMR signal.
b.
 Each C is different. 4 kinds of C's $4{ }^{13} \mathrm{C}$ NMR signals
a.

2 kinds of C's
$2{ }^{13} \mathrm{C}$ NMR signals

 same groups on both sides of O 3 kinds of C's
$3{ }^{13} \mathrm{C}$ NMR signals
d.

Each C is different. 4 kinds of C's
$4{ }^{13} \mathrm{C}$ NMR signals

14.27

$4{ }^{1} \mathrm{H}$ NMR signals

$2{ }^{1} \mathrm{H}$ NMR signals

$3{ }^{1} \mathrm{H}$ NMR signals

all H's identical
$1^{1} \mathrm{H}$ NMR signal
b.

Each C is different. 3 kinds of C's
$3{ }^{13} \mathrm{C}$ NMR signals

2 kinds of C's
$2{ }^{13} \mathrm{C}$ NMR signals

Each C is different.
3 kinds of C's
$3{ }^{13} \mathrm{C}$ NMR signals

2 kinds of C's $2{ }^{13} \mathrm{C}$ NMR signals
c. Although the number of ${ }^{13} \mathrm{C}$ signals cannot be used to distinguish these isomers, each isomer exhibits a different number of signals in its ${ }^{1} \mathrm{H}$ NMR spectrum. As a result, the isomers are distinguishable by ${ }^{1} \mathrm{H}$ NMR spectroscopy.
14.28

These 2 C's are different because they

14.29 Electronegative elements shift absorptions downfield. The carbons of alkenes and benzene rings, and carbonyl carbons are also shifted downfield.
a.

The CH_{2} group is closer to the electronegative O and will be farther downfield.
b. $\underset{\uparrow}{\mathrm{BrCC}} \mathrm{H}_{2} \underset{\uparrow}{\mathrm{C}} \mathrm{HBr}_{2}$

The C of the CHBr_{2} group has two bonds to electronegative Br atoms and will be farther downfield.
c.

The carbonyl carbon is highly deshielded and will be farther downfield.
d.

The CH_{2} group is part of a double bond and will be farther downfield.
14.30
a. In order of lowest to highest chemical shift: b. In order of lowest to highest chemical shift:

14.31

- molecular formula $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$
$2 n+2=2(4)+2=10$
$10-8=2 / 2=1$ degree of unsaturation
- no IR peaks at 3200-3600 or $1700 \mathrm{~cm}^{-1}$ no $\mathrm{O}-\mathrm{H}$ or $\mathrm{C}=\mathrm{O}$
- ${ }^{1} \mathrm{H}$ NMR spectrum at 3.69 ppm only one kind of proton
- ${ }^{13} \mathrm{C}$ NMR spectrum at 67 ppm only one kind of carbon

This structure satisifies all the data. One ring is one degree of unsaturation. All carbons and protons are identical.

Chapter 14-12

14.32

- molecular formula $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$
$2 n+2=2(4)+2=10$
$10-8=2 / 2=1$ degree of unsaturation
- ${ }^{13} \mathrm{C}$ NMR signal at $>160 \mathrm{ppm}$ due to $\mathrm{C}=\mathrm{O}$

- molecular formula $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$
$2 n+2=2(4)+2=10$
$10-8=2 / 2=1$ degree of unsaturation
- all ${ }^{13} \mathrm{C}$ NMR signals at $<160 \mathrm{ppm}$ NO C=O
14.33

A
a. $4{ }^{1} \mathrm{H}$ NMR signals
b. $5{ }^{13} \mathrm{C}$ NMR signals (including the $4^{\circ} \mathrm{C}$)

B
a. $6{ }^{1} \mathrm{H}$ NMR signals
b. $7{ }^{13} \mathrm{C}$ NMR signals (including the carbonyl C)
14.34

a. $4^{1} \mathrm{H}$ NMR signals
b. $H_{a}: 1$ adjacent H, so 2 peaks
H_{b} : 2 adjacent H's, so 3 peaks
H_{c} : 3 adjacent H's, so 4 peaks
H_{d} : 2 adjacent H's, so 3 peaks

D
a. $5{ }^{1} \mathrm{H}$ NMR signals
b. H_{a} : singlet
H_{b} : 2 adjacent H's, so 3 peaks
H_{c} : 2 adjacent H 's, so 3 peaks
H_{d} : 1 nonequivalent H on the same C, so 2 peaks
H_{e} : 1 nonequivalent H on the same C, so 2 peaks
14.35 Use the directions from Answer 14.3.
a. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}$
c. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
2 kinds of H's
7 kinds of H 's
e.

b. $\quad\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CC}\left(\mathrm{CH}_{3}\right)_{3}$
d.

4 kinds of H 's
f.

g. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

3 kinds of $\mathrm{H}^{\prime} \mathrm{s}$

h.

i.

j.

14.36
a.

3 kinds of protons
b.

d.

14.37

14.38
$\delta($ in ppm $)=[$ observed chemical shift $(\mathrm{Hz})] / \mathrm{v}$ of the NMR $(\mathrm{MHz})]$
a. $2.5=x \mathrm{~Hz} / 300 \mathrm{MHz}$ $x=750 \mathrm{~Hz}$
b. $\mathrm{ppm}=1200 \mathrm{~Hz} / 300 \mathrm{MHz}$ $=4 \mathrm{ppm}$
c. $2.0=x \mathrm{~Hz} / 300 \mathrm{MHz}$ $x=600 \mathrm{~Hz}$
14.39
$2.16=x \mathrm{~Hz} / 500 \mathrm{MHz}$
$x=1080 \mathrm{~Hz}$ (chemical shift of acetone in Hz)
$1080 \mathrm{~Hz}+1570 \mathrm{~Hz}=\mathbf{2 6 5 0} \mathbf{~ H z}$
$2650 \mathrm{~Hz} / 500 \mathrm{MHz}=\mathbf{5 . 3} \mathbf{~ p p m}$ (chemical shift of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ signal)
14.40 Use the directions from Answer 14.7.
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{4}$
or

Adjacent O deshields the H's.
farther downfield
b.
 More electronegative F deshields the H's farther downfield
c. $\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{3}$
 Increasing alkyl substitution farther downfield
d.

Two electronegative
Br's deshield the H .
farther downfield
14.41 Use the directions from Answer 14.11.
[total number of integration units] / [total number of protons] $[13+33+73] / 10=\sim 12$ units per proton

Signal of 13 units is from $1 \mathbf{H}$. Signal of 33 units is from 3 H's. Signal of 73 units is from 6 H's.
14.42
a.

$H_{a}: H_{b}=1: 3 \quad H_{a}: H_{b}=1: 1$
different ratio of peak areas
H_{b} in $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}_{3}$ is farther downfield
c.

$$
\mathrm{H}_{\mathrm{a}}: \mathrm{H}_{\mathrm{b}}=3: 2
$$

$$
H_{a}: H_{b}=3: 1
$$

than all H's in $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$.
different ratio of peak areas
b.

$H_{a}: H_{b}=3: 2 \quad H_{a}: H_{b}=3: 1$
different ratio of peak areas
14.43 The following compounds give one singlet in a ${ }^{1} \mathrm{H}$ NMR spectrum:
$\mathrm{CH}_{3} \mathrm{CH}_{3}$
$\mathrm{CH}_{3}-\mathrm{C}=\mathrm{C}-\mathrm{CH}_{3}$

14.44
a. $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{2}$
CH_{3} protons split by $1 \mathrm{H}=$ doublet
CH proton split by 3 H 's = quartet
b.

c.

CH_{3} protons split by 2 H 's $=$ triplet CH_{2} protons split by 3 H 's = quartet

CH_{2} protons split by $1 \mathrm{H}=$ doublet

$$
\mathrm{CH} \text { proton split by } 2 \text { H's = triplet }
$$

H_{a} protons split by $1 \mathrm{H}=$ doublet
H_{b} proton split by 6 H 's = septet
H_{c} protons split by 3 H 's = quartet
H_{d} protons split by 2 H 's = triplet
g. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$

H_{a} protons split by 2 H 's = triplet
H_{b} protons split by $\mathrm{CH}_{3}+\mathrm{CH}_{2}$ protons $=12$ peaks (maximum)
H_{c} protons split by 2 different CH_{2} groups $=9$ peaks (maximum)
H_{d} protons split by 2 H 's = triplet
Since H_{b} and H_{c} are located in a flexible alkyl chain, it is likely that peak overlap occurs, so that the following is observed: $\mathrm{H}_{\mathrm{b}}(3+2+1=$
f. $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$

H_{a} protons split by $2 \mathrm{CH}_{2}$ groups $=$ quintet
H_{b} protons split by 2 H 's = triplet

6 peaks $), \mathrm{H}_{\mathrm{c}}(2+2+1=5$ peaks $)$.
h.

H_{a} protons split by 2 H 's = triplet
H_{c} protons split by 2 H 's $=$ triplet
H_{b} protons split by $\mathrm{CH}_{3}+\mathrm{CH}_{2}$ protons $=12$ peaks (maximum)
Since H_{b} is located in a flexible alkyl chain, it is likely that peak overlap occurs, so that only $3+2+1=6$ peaks will be observed.
i.

H_{a} : split by CH_{3} group $+\mathrm{H}_{\mathrm{b}}$
$=8$ peaks (maximum)
H_{b} : split by 2 H 's = triplet

H_{a} : split by $1 \mathrm{H}=$ doublet
H_{b} : split by $1 \mathrm{H}=$ doublet
k.

H_{a} : split by $1 \mathrm{H}=$ doublet H_{b} : split by $1 \mathrm{H}=$ doublet
I.

H_{a} : split by $\mathrm{H}_{\mathrm{b}}+\mathrm{H}_{\mathrm{c}}$ -
doublet of doublets (4 peaks) H_{b} : split by $\mathrm{H}_{\mathrm{a}}+\mathrm{H}_{\mathrm{c}}$ doublet of doublets (4 peaks)
H_{c} : split by $\mathrm{CH}_{3}, \mathrm{H}_{\mathrm{a}}+\mathrm{H}_{\mathrm{b}}-16$
peaks
14.45

H_{a} : split by $1 \mathrm{H}=$ doublet
H_{b} : split by $1 \mathrm{H}=$ doublet
H_{a} and H_{b} are geminal.

H_{a} : split by $1 \mathrm{H}=$ doublet
H_{b} : split by $1 \mathrm{H}=$ doublet H_{a} and H_{b} are trans.

Both compounds exhibit two doublets for the H 's on the $\mathrm{C}=\mathrm{C}$, but the coupling constants ($J_{\text {geminal }}$ and $J_{\text {trans }}$) are different. $J_{\text {geminal }}$ is much smaller than $J_{\text {trans }}(0-3 \mathrm{~Hz}$ versus $11-18 \mathrm{~Hz}$).
14.46

$J_{\mathrm{ab}}=11.8 \mathrm{~Hz}$
$J_{b c}=0.9 \mathrm{~Hz}$
$J_{\mathrm{ac}}=18 \mathrm{~Hz}$
H_{a} : doublet of doublets at 5.7 ppm . Two large J values are seen for the H's cis $\left(J_{\mathrm{ab}}=11.8 \mathrm{~Hz}\right)$ and trans $\left(J_{\mathrm{ac}}=18 \mathrm{~Hz}\right)$ to H_{a}.
H_{b} : doublet of doublets at $\sim 6.2 \mathrm{ppm}$. One large J value is seen for the cis H
$\left(J_{\mathrm{ab}}=11.8 \mathrm{~Hz}\right)$. The geminal coupling $\left(J_{\mathrm{bc}}=0.9 \mathrm{~Hz}\right)$ is hard to see.
H_{c} : doublet of doublets at $\sim 6.6 \mathrm{ppm}$. One large J value is seen for the trans H
$\left(J_{\mathrm{ac}}=18 \mathrm{~Hz}\right)$. The geminal coupling $\left(J_{\mathrm{bc}}=0.9 \mathrm{~Hz}\right)$ is hard to see.
Splitting diagram for H_{a}
1 trans H_{c} proton splits H_{a} into
$1+1$ = 2 peaks
a doublet
1 cis H_{b} proton splits H_{a} into
$1+1=2$ peaks
Now it's a doublet of doublets.

$J_{a b}=$ the coupling constant between H_{a} and H_{b}
14.47

Four constitutional isomers of $\mathbf{C}_{4} \mathbf{H}_{9} \mathrm{Br}$:

2 different C's

3 different C's
14.48 Only two compounds in Problem 14.43 give one signal in their ${ }^{13} \mathrm{C}$ NMR spectrum:

$$
\mathrm{CH}_{3} \mathrm{CH}_{3}
$$

14.49

The O atom of an ester donates electron density, so the carbonyl carbon has less δ^{+}, making it less deshielded than the carbonyl carbon of an aldyhyde or ketone. Therefore, the carbonyl carbon of an aldehyde or ketone is more deshielded and absorbs farther downfield.
14.50
a. $\mathrm{HC}\left(\mathrm{CH}_{3}\right)_{3}$
2 signals
d.

7 signals
g.

5 signals
b.
 5 signals
e.

3 signals
c. $\mathrm{CH}_{3} \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}$
3 signals
f.

7 signals
h.

4 signals
i.

3 signals

14.51

a.

b.

c.

$\mathrm{C}_{\mathrm{c}}<\mathrm{C}_{\mathrm{b}}<\mathrm{C}_{\mathrm{a}}$
d.

$C_{b}<C_{c}<C_{a}$
14.52

14.53
a.

3 different C's
3 signals
b.

3 signals

4 signals

5 signals
14.54 Use the directions from Answer 14.23.
a. $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Br}_{2}$: 0 degrees of unsaturation IR peak at $3000-2850 \mathrm{~cm}^{-1}$: $\mathrm{Csp}^{3}-\mathrm{H}$ bonds
NMR: singlet at $1.87 \mathrm{ppm}(6 \mathrm{H})\left(2 \mathrm{CH}_{3}\right.$ groups) singlet at $3.86 \mathrm{ppm}(2 \mathrm{H})\left(\mathrm{CH}_{2}\right.$ group $)$

b. $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Br}_{2}$: 0 degrees of unsaturation IR peak at $3000-2850 \mathrm{~cm}^{-1}$: $\mathrm{Csp}^{3}-\mathrm{H}$ bonds
NMR: quintet at 2.4 ppm (split by $2 \mathrm{CH}_{2}$ groups) triplet at 3.5 ppm (split by $2 \mathrm{H}^{\prime}$)

c. $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$: 1 degree of unsaturation

IR peak at $1740 \mathrm{~cm}^{-1}$: $\mathbf{C = O}$
NMR: triplet at $1.15 \mathrm{ppm}(3 \mathrm{H})\left(\mathrm{CH}_{3}\right.$ split by 2 H 's $)$ triplet at $1.25 \mathrm{ppm}(3 \mathrm{H})\left(\mathrm{CH}_{3}\right.$ split by 2 H 's $)$ quartet at $2.30 \mathrm{ppm}(2 \mathrm{H})\left(\mathrm{CH}_{2}\right.$ split by 3 H 's $)$ quartet at $4.72 \mathrm{ppm}(2 \mathrm{H})\left(\mathrm{CH}_{2}\right.$ split by 3 H 's $)$

d. $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}$: 0 degrees of unsaturation IR peak at $3600-3200 \mathrm{~cm}^{-1}: \mathbf{O}-\mathbf{H}$
NMR: triplet at $0.8 \mathrm{ppm}(6 \mathrm{H})\left(2 \mathrm{CH}_{3}\right.$ groups split by CH_{2} groups)
singlet at $1.0 \mathrm{ppm}(3 \mathrm{H})\left(\mathrm{CH}_{3}\right)$
quartet at $1.5 \mathrm{ppm}(4 \mathrm{H})\left(2 \mathrm{CH}_{2}\right.$ groups split by CH_{3} groups)
singlet at $1.6 \mathrm{ppm}(1 \mathrm{H})(\mathrm{O}-\mathrm{H}$ proton)

Chapter 14-18
e. $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}: 0$ degrees of unsaturation IR peak at 3000-2850 $\mathrm{cm}^{-1}: \mathrm{Csp}^{3}-\mathrm{H}$ bonds
NMR: doublet at 1.10 ppm (integration $=30$ units) (from 12 H 's)
septet at 3.60 ppm (integration $=5$ units) (from 2 H 's)

f. $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$: 1 degree of unsaturation IR peak at $1730 \mathrm{~cm}^{-1}: \mathbf{C = O}$
NMR: triplet at 1.11 ppm multiplet at 2.46 ppm triplet at 9.79 ppm

14.55

Two isomers of $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}$: 5 degrees of unsaturation (benzene ring likely)
Compound A:
IR absorption at $1742 \mathrm{~cm}^{-1}: \mathbf{C =}$
NMR data:
Absorptions:
singlet at $2.15(3 \mathrm{H})\left(\mathrm{CH}_{3}\right.$ group)
singlet at $3.70(2 \mathrm{H})\left(\mathrm{CH}_{2}\right.$ group)
Compound B:
IR absorption at $1688 \mathrm{~cm}^{-1}: \mathbf{C =}$
NMR data:
Absorptions:
triplet at $1.22(3 \mathrm{H})\left(\mathrm{CH}_{3}\right.$ group split by 2 H 's $)$
broad singlet at $7.20(5 \mathrm{H})$
quartet at $2.98(2 \mathrm{H})\left(\mathrm{CH}_{2}\right.$ group split by $\left.3 \mathrm{H}^{\prime} \mathrm{s}\right)$
multiplet at 7.28-7.95 (5 H)
(likely a monosubstituted benzene ring)

14.56 IR absorptions:

3088-2897 $\mathrm{cm}^{-1}: s p^{2}$ and $s p^{3}$ hybridized $\mathrm{C}-\mathrm{H}$
$1740 \mathrm{~cm}^{-1}: \mathrm{C}=\mathrm{O}$
$1606 \mathrm{~cm}^{-1}$: benzene ring

14.57 IR absorption at $1713 \mathrm{~cm}^{-1}$ is due to $\mathrm{C}=\mathrm{O}$.

14.58

Compound C:

molecular ion 146 (molecular formula $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}$)
IR absorption at $1762 \mathrm{~cm}^{-1}: \mathbf{C =} \mathbf{O}$
${ }^{1} \mathrm{H}$ NMR data:
Absorptions:
H_{a} : doublet at $1.47(3 \mathrm{H})\left(\mathrm{CH}_{3}\right.$ group adjacent to CH$)$
H_{b} : singlet at $2.07(6 \mathrm{H})\left(2 \mathrm{CH}_{3}\right.$ groups $)$
H_{c} : quartet at $6.84\left(1 \mathrm{H}\right.$ adjacent to $\left.\mathrm{CH}_{3}\right)$

14.59

D

Compound D:

molecular ion 84 (molecular formula $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}$)
IR absorptions at $3600-3200 \mathrm{~cm}^{-1}$: OH $3303 \mathrm{~cm}^{-1}$: Csp-H $2938 \mathrm{~cm}^{-1}: \mathrm{Csp}^{3}-\mathrm{H}$ $2120 \mathrm{~cm}^{-1}$: C $=\mathrm{C}$
${ }^{1} \mathrm{H}$ NMR data:
Absorptions:
H_{a} : singlet at $1.53(6 \mathrm{H})\left(2 \mathrm{CH}_{3}\right.$ groups $)$
H_{b} : singlet at $2.37(1 \mathrm{H})>$ alkynyl CH and OH
H_{c} : singlet at $2.43(1 \mathrm{H})$
14.60

Compound E:
$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$:
1 degree of unsaturation
IR absorption at $1743 \mathrm{~cm}^{-1}$: $\mathbf{C = O}$
NMR data:
total integration units/\# H's $(23+29+30) / 8=\sim 10$ units per H
H_{a} : quartet at $4.1(23$ units $-\mathbf{2} \mathbf{~ H})$
H_{b} : singlet at 2.0 (29 units -3 H)
H_{c} : triplet at 1.4 (30 units $-\mathbf{3} \mathbf{~ H}$)

Compound F :

$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$:
1 degree of unsaturation
IR absorption at $1730 \mathrm{~cm}^{-1}: \mathbf{C = O}$

NMR data:

total integration units/\# H's $(18+30+31) / 8=\sim 10$ units per H
H_{a} : singlet at 4.1 (18 units - 2 H)
H_{b} : singlet at 3.4 (30 units $-3 \mathbf{~ H}$)
H_{c} : singlet at 2.1 (31 units - $\mathbf{3} \mathbf{~ H}$)

Chapter 14-20

14.61

Compound H :
$\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}$:
4 degrees of unsaturation
IR absorptions at $3365 \mathrm{~cm}^{-1}$: N-H

$$
3284 \mathrm{~cm}^{-1}: \mathrm{N}-\mathrm{H}
$$ $3026 \mathrm{~cm}^{-1}$: $\mathrm{Csp}^{2}-\mathrm{H}$

$2932 \mathrm{~cm}^{-1}: \mathrm{C}_{s p^{3}-\mathrm{H}}$ $1603 \mathrm{~cm}^{-1}$: due to benzene $1497 \mathrm{~cm}^{-1}$: due to benzene

NMR data:

multiplet at 7.2-7.4 ppm, $5 \mathbf{H}$ on a benzene ring
H_{a} : triplet at $2.9 \mathrm{ppm}, 2 \mathbf{H}$, split by 2 H 's
H_{b} : triplet at $2.8 \mathrm{ppm}, 2 \mathrm{H}$, split by 2 H 's H_{c} : singlet at $1.1 \mathrm{ppm}, \mathbf{2} \mathbf{~ H}$, no splitting (on NH_{2})

Compound I:

$\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}$:
4 degrees of unsaturation
IR absorptions at $3367 \mathrm{~cm}^{-1}$: N-H
$3286 \mathrm{~cm}^{-1}$: N-H
$3027 \mathrm{~cm}^{-1}$: Csp ${ }^{2}-\mathrm{H}$
$2962 \mathrm{~cm}^{-1}: \mathrm{C}_{\text {sp }}{ }^{3}-\mathrm{H}$
$1604 \mathrm{~cm}^{-1}$: due to benzene $1492 \mathrm{~cm}^{-1}$: due to benzene

NMR data:

multiplet at 7.2-7.4 ppm, 5 H on a benzene ring
H_{a} : quartet at $4.1 \mathrm{ppm}, \mathbf{1} \mathbf{~ H}$, split by 3 H 's
H_{b} : singlet at $1.45 \mathrm{ppm}, \mathbf{2} \mathbf{~ H}$, no splitting $\left(\mathrm{NH}_{2}\right)$
H_{c} : doublet at $1.4 \mathrm{ppm}, \mathbf{3} \mathbf{~ H}$, split by 1 H

14.62
a. $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}$:
5 degrees of unsaturation
IR absorption at $1718 \mathrm{~cm}^{-1}$: $\mathbf{C =}=\mathbf{O}$
NMR data:
multiplet at $7.4-8.1 \mathrm{ppm}, 5 \mathrm{H}$ on a benzene ring quartet at $4.4 \mathrm{ppm}, \mathbf{2} \mathbf{~ H}$, split by 3 H 's
triplet at $1.3 \mathrm{ppm}, \mathbf{3} \mathbf{H}$, split by 2 H 's

downfield due to the O atom
b. $\mathrm{C}_{9} \mathrm{H}_{12}$: 4 degrees of unsaturation IR absorption at 2850-3150 cm^{-1} : C-H bonds NMR data: singlet at $7.1-7.4 \mathrm{ppm}, 5 \mathbf{H}$, benzene septet at $2.8 \mathrm{ppm}, 1 \mathbf{H}$, split by 6 H 's doublet at $1.3 \mathrm{ppm}, 6 \mathbf{H}$, split by 1 H

14.63 IR absorption at $1717 \mathrm{~cm}^{-1}$ is due to a $\mathrm{C}=\mathrm{O}$.

14.64 IR absorption at $1730 \mathrm{~cm}^{-1}$ is due to a $\mathrm{C}=\mathrm{O}$. Eight lines in the ${ }^{13} \mathrm{C}$ NMR spectrum means there are eight different types of C .

14.65

a. Compound J has a molecular ion at 72: molecular formula $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$

1 degree of unsaturation
IR spectrum at $1710 \mathrm{~cm}^{-1}: \mathbf{C = O}$
${ }^{1} \mathrm{H}$ NMR data (ppm):
1.0 (triplet, 3 H), split by 2 H's

2.1 (singlet, 3 H)
2.4 (quartet, 2 H), split by 3 H's
b. Compound K has a molecular ion at 88: molecular formula $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$ 0 degrees of unsaturation
IR spectrum at $3600-3200 \mathrm{~cm}^{-1}$: O-H bond
${ }^{1} \mathrm{H}$ NMR data (ppm):
0.9 (triplet, 3 H), split by 2 H 's
1.2 (singlet, 6 H), due to $2 \mathrm{CH}_{3}$ groups

1.5 (quartet, 2 H), split by 3 H 's
1.6 (singlet, 1 H), due to the OH proton
14.66

Compound L has a molecular ion at 90 : molecular formula $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{2}$

0 degrees of unsaturation
IR absorptions at 2992 and $2941 \mathrm{~cm}^{-1}$: $\mathrm{C} s p^{3}-\mathrm{H}$
${ }^{1} \mathrm{H}$ NMR data (ppm):
H_{a} : 1.2 (doublet, 3 H), split by 1 H $\mathrm{H}_{\mathrm{b}}: 3.3$ (singlet, 6 H), due to $2 \mathrm{CH}_{3}$ groups $\mathrm{H}_{\mathrm{c}}: 4.8$ (quartet, 1 H), split by 3 adjacent H's
total integration units/\# H's $(25+46+7) / 10=\sim 8$ units per H

Chapter 14-22

14.67

14.68

Compound \mathbf{O} has a molecular formula $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}$.

5 degrees of unsaturation

IR absorption at $1687 \mathbf{~ c m}^{-1}$
${ }^{1} \mathrm{H}$ NMR data (ppm):
$\mathrm{H}_{\mathrm{a}}: 1.0$ (triplet, 3 H), due to CH_{3} group, split by 2 adjacent H 's
H_{b} : 1.7 (sextet, 2 H), split by CH_{3} and CH_{2} groups

H_{c} : 2.9 (triplet, 2 H), split by $2 \mathrm{H}^{\prime} \mathrm{s}$
7.4-8.0 (multiplet, 5 H), benzene ring
14.69

Compound \mathbf{P} has a molecular formula $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{ClO}_{2}$.
1 degree of unsaturation
${ }^{13} \mathrm{C}$ NMR shows 5 different C 's, including a $\mathrm{C}=\mathrm{O}$.
${ }^{1} \mathrm{H}$ NMR data (ppm):
H_{a} : 1.3 (triplet, 3 H), split by 2 H 's
H_{b} : 2.8 (triplet, 2 H), split by 2 H 's
H_{c} : 3.7 (triplet, 2 H), split by $2 \mathrm{H}^{\prime} \mathrm{s}$

H_{d} : 4.2 (quartet, 2 H), split by CH_{3} group

14.70

Compound Q: Molecular ion at 86.
Molecular formula: $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$: 1 degree of unsaturation
IR absorption at $\sim 1700 \mathrm{~cm}^{-1}: \mathbf{C = O}$

NMR data:

H_{a} : doublet at $1.1 \mathrm{ppm}, 2 \mathrm{CH}_{3}$ groups split by 1 H
H_{b} : singlet at $2.1 \mathrm{ppm}, \mathrm{CH}_{3}$ group
H_{c} : septet at $2.6 \mathrm{ppm}, 1 \mathrm{H}$ split by 6 H s
14.71
a. Compound R , the odor of banana: $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}$ 1 degree of unsaturation
${ }^{1} \mathrm{H}$ NMR (ppm):
$\mathrm{H}_{\mathrm{a}}: 0.93$ (doublet, 6 H)
H_{b} : 1.52 (multiplet, 2 H)
H_{c} : 1.69 (multiplet, 1 H)
H_{d} : 2.04 (singlet, 3 H)
$\mathrm{H}_{\mathrm{e}}: 4.10$ (triplet, 2 H)

b. Compound \mathbf{S}, the odor of rum: $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}$ 1 degree of unsaturation
${ }^{1} \mathrm{H}$ NMR (ppm):
H_{a} : 0.94 (doublet, 6 H)
H_{b} : 1.15 (triplet, 3 H)
H_{c} : 1.91 (multiplet, 1 H)
H_{d} : 2.33 (quartet, 2 H)
H_{e} : 3.86 (doublet, 2 H)

14.72

$\mathrm{C}_{6} \mathrm{H}_{12}$:
1 degree of unsaturation
T ${ }^{1} \mathrm{H}$ NMR of $\mathbf{T}(\mathrm{ppm})$:
$\mathrm{H}_{\mathrm{a}}: 1.01$ (singlet, 9 H)
H_{b} : 4.82 (doublet of doublets, $1 \mathrm{H}, J=10,1.7 \mathrm{~Hz}$)
H_{c} : 4.93 (doublet of doublets, $1 \mathrm{H}, J=18,1.7 \mathrm{~Hz}$)
$H_{d}: 5.83$ (doublet of doublets, $1 \mathrm{H}, J=18,10 \mathrm{~Hz}$)

All H's are identical, so there is only one singlet in the NMR.

14.73

a.
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$:
1 degree of unsaturation
IR peak at $1740 \mathrm{~cm}^{-1}: \mathbf{C = O}$
${ }^{1} \mathrm{H}$ NMR 2 signals: 2 types of H's
${ }^{13} \mathrm{C}$ NMR: 4 signals: 4 kinds of C's,
including one at $\sim 170 \mathrm{ppm}$ due a $\mathrm{C}=\mathrm{O}$

b.
$\mathrm{C}_{6} \mathrm{H}_{10}$:
2 degrees of unsaturation
IR peak at $3000 \mathrm{~cm}^{-1}$: $\mathbf{C s p}^{\mathbf{3}} \mathbf{- H}$ bonds peak at $3300 \mathrm{~cm}^{-1}: \mathrm{C}_{\text {sp }}-\mathbf{H}$ bond peak at $\sim 2150 \mathrm{~cm}^{-1}$: $\mathrm{C} \equiv \mathrm{C}$ bond
${ }^{13} \mathrm{C}$ NMR: 4 signals: 4 kinds of C's

14.74 a. Since A has no absorptions at $1700 \mathrm{~cm}^{-1}$ or $3600-3200 \mathrm{~cm}^{-1}$, it has no $\mathrm{C}=\mathrm{O}$ or OH . An oxygen-containing compound without these functional groups is an ether (or an epoxide). Since \mathbf{B} is formed from a reaction with HCl, \mathbf{A} must contain an epoxide, because ethers are unreactive with HCl .

b. Epoxide A is equally substituted by R groups on both C 's. With HCl , the epoxide is protonated first and then backside attack by Cl^{-}forms the chlorohydrin. Attack at the C adjacent to the benzene ring is preferred because the δ^{+}in the transition state at this carbon can be delocalized on the benzene ring.

The benzene ring and CH_{3} group must be trans in the epoxide to give the correct configuration at the two stereogenic centers in the product.

14.75

A second resonance structure for N, N-dimethylformamide places the two CH_{3} groups in different environments. One CH_{3} group is cis to the O atom, and one is cis to the H atom. This gives rise to two different absorptions for the CH_{3} groups.
14.76

18-Annulene has 18π electrons that create an induced magnetic

field similar to the 6π electrons of benzene. 18-Annulene has 12 protons that are oriented on the outside of the ring (labeled H_{0}), and 6 protons that are oriented inside the ring (labeled H_{i}). The induced magnetic field reinforces the external field in the vicinity of the protons on the outside of the ring. These H_{o} protons are deshielded and so they absorb downfield (8.9 ppm). In contrast, the induced magnetic field is opposite in direction to the applied magnetic field in the vicinity of the protons on the inside of the ring. This shields the H_{i} protons and the absorption is therefore very far upfield, even higher than TMS (-1.8 ppm).

14.77

The CH_{3} groups are not equivalent to each other, since replacement of each by X forms two diastereomers.

Thus, every C in this compound is different and there are five ${ }^{13} \mathrm{C}$ signals.
14.78

One P atom splits each nearby CH_{3} into a doublet by the $n+1$ rule, making two doublets.

All $6 \mathrm{H}_{\mathrm{a}}$ protons are equivalent.
14.79 a. Splitting pattern:

Chapter 14-26

b. Three resonance structures can be drawn for 2-cyclohexenone.

Resonance structure \mathbf{C} places a $(+)$ charge on one C of the $\mathrm{C}=\mathrm{C}$, deshielding the H attached to it and shifting the absorption downfield.

Chapter 15 Radical Reactions

Chapter Review

General features of radicals

- A radical is a reactive intermediate with an unpaired electron (15.1).
- A carbon radical is $s p^{2}$ hybridized and trigonal planar (15.1).
- The stability of a radical increases as the number of C's bonded to the radical carbon increases (15.1).

Increasing alkyl substitution Increasing radical stability

- Allylic radicals are stabilized by resonance, making them more stable than 3° radicals (15.10).

two resonance structures for the allyl radical

Radical reactions

[1] Halogenation of alkanes (15.4)

- The reaction follows a radical chain mechanism.
- The weaker the $\mathrm{C}-\mathrm{H}$ bond, the more readily the H is replaced by X .
- Chlorination is faster and less selective than bromination (15.6).
- Radical substitution results in racemization at a stereogenic center (15.8).
[2] Allylic halogenation (15.10)

[3] Radical addition of HBr to an alkene (15.13)

- A radical addition mechanism is followed.
- Br bonds to the less substituted carbon atom to form the more substituted, more stable radical.
[4] Radical polymerization of alkenes (15.14)

Practice Test on Chapter Review

1. a. Which alkyl halide(s) can be made in good yield by radical halogenation of an alkane?
2.

2.

3.

4. Both (1) and (2) can be made in good yield.
5. Compounds (1), (2), and (3) can all be made in good yield.
b. In which of the following reactions will rearrangement not occur?

1. halogenation of an alkane with Cl_{2} and heat
2. addition of Cl_{2} to an alkene
3. addition of HCl to an alkene
4. Rearrangements do not occur in reactions (1) and (2).
5. Rearrangements do not occur in reactions (1), (2), and (3).
c. Which labeled H is most easily abstracted in a radical halogenation reaction?

6. H_{a}
7. H_{b}
8. H_{c}
9. H_{d}
10. H_{e}
d. Which of the labeled $\mathrm{C}-\mathrm{H}$ bonds in the following compound has the smallest bond dissociation energy?

11. $\mathrm{C}-\mathrm{H}_{\mathrm{a}}$
12. $\mathrm{C}-\mathrm{H}_{\mathrm{b}}$
13. $\mathrm{C}-\mathrm{H}_{\mathrm{c}}$
14. $\mathrm{C}-\mathrm{H}_{\mathrm{d}}$
15. $\mathrm{C}-\mathrm{H}_{\mathrm{e}}$
16. (a) Which radical is the most stable? (b) Which radical is the least stable?

A

B

C

D
17. Draw all of the organic products formed in each reaction. Indicate stereochemistry in part (c).
a.

b.

c.

18. What monomer is needed to make the following polymer?

19. In each box, fill in the appropriate reagents needed to carry out the given reaction. This question involves reactions from Chapter 15, as well as previous chapters.

Answers to Practice Test

1.a. 2
b. 4
c. 2
d. 3
2.a. A
b. B
3.a.

3.b.

$+$
$\mathrm{BrCH}_{2} \mathrm{CH}=\mathrm{CHCH}_{3}$ (cis and trans)
3.c.

4.

Chapter 15-4

5.

Answers to Problems

15.1 1° Radicals are on C's bonded to one other C; 2° radicals are on C's bonded to two other C's; 3° radicals are on C^{\prime} s bonded to three other $\mathrm{C}^{\prime} \mathrm{s}$.
a.

2° radical
b.

3° radical
c.

2° radical
d.

1° radical
15.2 The stability of a radical increases as the number of alkyl groups bonded to the radical carbon increases. Draw the most stable radical.
a. $\left(\mathrm{CH}_{3}\right)_{2} \dot{\mathrm{C}} \mathrm{CH}_{2} \mathrm{CH}_{3}$
b. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCHCH}$
c. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2}$
d.

15.3 Reaction of a radical with:

- an alkane abstracts a hydrogen atom and creates a new carbon radical.
- an alkene generates a new bond to one carbon and a new carbon radical.
- another radical forms a bond.
a. $\mathrm{CH}_{3}-\mathrm{CH}_{3} \xrightarrow{\ddot{\mathrm{C}} \cdot} \mathrm{CH}_{3}-\dot{\mathrm{C}} \mathrm{H}_{2}+\mathrm{H}-\ddot{\mathrm{C}}$:
c. : $\ddot{\mathrm{Cl}} \cdot \xrightarrow{: \ddot{\mathrm{C}} \cdot}$: $\ddot{\mathrm{C}} \mathrm{I}-\ddot{\mathrm{C}} \mathrm{l}$:
b.

d. $: \ddot{\mathrm{C}} \cdot+\cdot \ddot{O}-\ddot{O} \cdot \longrightarrow \ddot{\mathrm{C}}-\ddot{\mathrm{O}}-\ddot{O} \cdot$
15.4 Monochlorination is a radical substitution reaction in which a Cl replaces a H , thus generating an alkyl halide.
a.

b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

15.5

A

B

15.6

Termination:

15.7

Step 1:

Step 2:

15.8 The rate-determining step for halogenation reactions is formation of $\mathrm{CH}_{3} \cdot+\mathrm{HX}$.

15.9 The weakest $\mathbf{C}-\mathbf{H}$ bond in each alkane is the most readily cleaved during radical halogenation.
a.

most reactive
b.

3°
most reactive
c. $\mathrm{CH}_{3} \mathrm{CHCH}_{2} \mathrm{CH}_{3}$
I
H
2°
most reactive

Chapter 15-6

15.10 To draw the product of bromination:

- Draw out the starting material and find the most reactive $\mathrm{C}-\mathrm{H}$ bond (on the most substituted C).
- The major product is formed by cleavage of the weakest $\mathbf{C}-\mathbf{H}$ bond.
a.

c.

b.

d.

15.11 If $1^{\circ} \mathrm{C}-\mathrm{H}$ and $3^{\circ} \mathrm{C}-\mathrm{H}$ bonds were equally reactive there would be nine times as much $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{Cl}$ as $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}$ since the ratio of 1° to $3^{\circ} \mathrm{H}$'s is 9:1. The fact that the ratio is only $63: 37$ shows that the $1^{\circ} \mathrm{C}-\mathrm{H}$ bond is less reactive than the $3^{\circ} \mathrm{C}-\mathrm{H}$ bond. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{Cl}$ is still the major product, though, because there are nine $1^{\circ} \mathrm{C}-\mathrm{H}$ bonds and only one $3^{\circ} \mathrm{C}-\mathrm{H}$ bond.
15.12
a.

c.
 (from b.)
b.

d.

15.13
a.

b.

(from a.)
15.14 Since the reaction does not occur at the stereogenic center, leave it as is.

15.15
a.

b.

c.

d.

15.16

15.17 Draw the resonance structure by moving the π bond and the unpaired electron. The hybrid is drawn with dashed lines for bonds that are in one resonance structure but not another. The symbol δ° is used on any atom that has an unpaired electron in any resonance structure.
a.

hybrid:

b.

c.

hybrid:

d.

Chapter 15-8

15.18 Reaction of an alkene with NBS or $\mathrm{Br}_{2}+h \nu$ yields allylic substitution products.
a.

c.

b. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{3} \xrightarrow[h v]{\mathrm{NBS}} \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{Br}$

15.19

b.

15.20

15.21 Reaction of an alkene with NBS $+h \nu$ yields allylic substitution products.
a.
 one possible product: high yield
b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{Br}$

Cannot be made in high yield by allylic halogenation.
Any alkene starting material would yield a mixture of allylic halides.
15.22 The weakest C-H bond is most readily cleaved. To draw the hydroperoxide products, add OOH to each carbon that bears a radical in one of the resonance structures.

hydroperoxide products:

15.23 Only (b) has an OH on a benzene ring, so it may be an antioxidant.
b.

15.24
a.

b.

c. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \xrightarrow[\text { or } \mathrm{HBr}, \mathrm{ROOR}]{\mathrm{HBr}}$

15.25 In addition of HBr under radical conditions:

- $\mathrm{Br} \cdot$ adds first to form the more stable radical.
- Then H . is added to the carbon radical.

Chapter 15-10

2 radical possibilities:

1° radical less stable

3° radical more stable This radical forms
15.26
a.

c.

b.

15.27

Reaction coordinate
15.28
a.

15.29

Initiation:

Propagation:

Repeat Step [3] over and over. new C-C bond

Termination:

15.30 With Cl_{2}, each H of the starting material can be replaced by Cl . With Br_{2}, cleavage of the weakest $\mathrm{C}-\mathrm{H}$ bond is preferred.

Chapter 15-12

15.31

Abstraction of the phenol H produces a resonance-stabilized radical.

15.32
a. increasing bond strength: $2<3<1$
b. and c.

d. increasing ease of H abstraction: $1<3<2$
15.33 Use the directions from Answer 15.2 to rank the radicals.
a. $\quad\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \dot{\mathrm{C}} \mathrm{H}_{2}$
1° radical least stable
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \dot{\mathrm{C}} \mathrm{HCH}\left(\mathrm{CH}_{3}\right)_{2}$ 2° radical
 intermediate stability most stable
b.

allylic radical most stable
15.34 Draw the radical formed by cleavage of the benzylic C-H bond. Then draw all of the resonance structures. Having more resonance structures (five in this case) makes the radical more stable, and the benzylic $\mathrm{C}-\mathrm{H}$ bond weaker.

15.35

$\mathrm{H}_{\mathrm{a}}=$ bonded to an $s p^{3} 3^{\circ}$ carbon

15.36

a.

$\mathrm{H}_{\mathrm{b}}=$ bonded to an allylic carbon
$\mathrm{H}_{\mathrm{c}}=$ bonded to an $s p^{3} 1^{\circ}$ carbon

$\mathrm{H}_{\mathrm{d}}=$ bonded to an $s p^{3} 2^{\circ}$ carbon
b. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \longrightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}+$

c.

d.

15.37 To draw the product of bromination:

- Draw out the starting material and find the most reactive $\mathrm{C}-\mathrm{H}$ bond (on the most substituted C).
- The major product is formed by cleavage of the weakest $\mathbf{C}-\mathbf{H}$ bond.
a.

c.

b. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ \qquad

d. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{CH}_{3}$ \longrightarrow $\underset{\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCHCH}_{3}^{\mathrm{Br}}}{\substack{\mathrm{B} \\ \hline}}$
15.38 Draw all of the alkane isomers of $\mathrm{C}_{6} \mathrm{H}_{14}$ and their products on chlorination. Then determine which letter corresponds to which alkane.

Chapter 15-14

15.39 Halogenation replaces a $\mathrm{C}-\mathrm{H}$ bond with a $\mathrm{C}-\mathrm{X}$ bond. To find the alkane needed to make each of the alkyl halides, replace the X with an H .
a.

c.

b.

d.

15.40 For an alkane to yield one major product on monohalogenation with Cl_{2}, all of the hydrogens must be identical in the starting material. For an alkane to yield one major product on bromination, it must have a more substituted carbon in the starting material.
a.

c.

b.

These two compounds can be formed in high yield from an alkane.

15.41 A single constitutional isomer is formed in both halogenations in (a), (c), and (d). Bromination often forms a single product by cleavage of the weakest $\mathrm{C}-\mathrm{H}$ bond. For chlorination to form a single product, the starting material must have only one kind of H that reacts. In (c), a single chlorination product is formed because there is only one type of $s p^{3}$ hybridized $\mathrm{C}-\mathrm{H}$ bond.
a. $\square \underset{h v}{\mathrm{Cl}_{2}} \square \mathrm{Cl}$

b.

c.

d.

e.

15.42 In bromination, the predominant (or exclusive) product is formed by cleavage of the weaker $\mathrm{C}-\mathrm{H}$ bond to form the more stable radical intermediate.

15.43 Chlorination is not selective so a mixture of products results. Bromination is selective, and the major product is formed by cleavage of the weakest $\mathrm{C}-\mathrm{H}$ bond.
a.

Y

b.

c.

$\mathrm{K}^{+-\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}}$

Z
15.44 Draw the resonance structures by moving the π bonds and the radical.
a.

b.

Chapter 15-16

15.45 Reaction of an alkene with NBS $+h \nu$ yields allylic substitution products.
a.

b.

c. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCH}_{3} \xrightarrow[h \nu]{\mathrm{NBS}}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{Br}+\mathrm{BrCH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{CHCH}_{3}+\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}(\mathrm{Br}) \mathrm{CH}_{3}$ $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{Br}) \mathrm{CH}=\mathrm{CH}_{2}$
d.

 $+$

15.46 It is not possible to form 5-bromo-1-methylcyclopentene in good yield by allylic bromination because several other products are formed. 1-Methylcyclopentene has three different types of allylic hydrogens (labeled with *), all of which can be removed during radical bromination.

15.47

15.48
a.

 $+$

b.

c.

d.

e.

h.

f.

i.

g.

15.49

15.50

15.51

a.

b.

Chapter 15-18
c.

d.

e.

f.

15.52
a.

(2R)-2-chloropentane

F

b. There would be seven fractions, since each molecule drawn has different physical properties.
c. Fractions A, B, D, E, and \mathbf{G} would show optical activity.

15.53

a.

3
4
$+$

5

6

7

a. There would be 10 fractions, since $\mathbf{4}$ and 5 (two enantiomers) would be in the same fraction.
b. All fractions except the one that contains $\mathbf{4}$ and $\mathbf{5}$ would be optically active.
15.54

15.55
a.

$\mathrm{C}-\mathrm{H}$ bond broken $+381 \mathrm{~kJ} / \mathrm{mol}$	$\mathrm{Br}-\mathrm{Br}$ bond broken $+192 \mathrm{~kJ} / \mathrm{mol}$	$\mathrm{C}-\mathrm{Br}$ bond formed $-272 \mathrm{~kJ} / \mathrm{mol}$	$\mathrm{H}-\mathrm{Br}$ bond formed $-368 \mathrm{~kJ} / \mathrm{mol}$
total bonds broken $=+573 \mathrm{~kJ} / \mathrm{mol}$			

b. Initiation:

Propagation:

c. $\Delta H^{\circ}=$ (bonds broken) - (bonds formed)
$=(+381 \mathrm{~kJ} / \mathrm{mol})+(-368 \mathrm{~kJ} / \mathrm{mol})$ $=+13 \mathrm{~kJ} / \mathrm{mol}$

$\Delta H^{\circ}=$ (bonds broken) - (bonds formed) $=(+192 \mathrm{~kJ} / \mathrm{mol})+(-272 \mathrm{~kJ} / \mathrm{mol})$ $=-80 \mathrm{~kJ} / \mathrm{mol}$

d, e.

Reaction coordinate

Chapter 15-20

15.56

Initiation:

NBS
Propagation:

Termination: $: \ddot{\mathrm{Br}} \cdot \underset{\mathrm{Br}}{\mathrm{Br}}: \longrightarrow \ddot{\mathrm{Br}}-\ddot{\mathrm{Br}} \mathrm{r}$ (one possibility)
15.57 Calculate the ΔH° for the propagation steps of the reaction of CH_{4} with I_{2} to show why it does not occur at an appreciable rate.

15.58 Calculate ΔH° for each of these steps, and use these values to explain why this alternate mechanism is unlikely.
[1]

[2]

$$
\underset{\substack{\mathrm{Cl} \cdot \mathrm{Cl} \text { bond broken } \\+242 \mathrm{~kJ} / \mathrm{mol}}}{\mathrm{Cl}_{2}} \longrightarrow \underset{\substack{\mathrm{H}-\mathrm{Cl} \text { bond formed } \\-431 \mathrm{~kJ} / \mathrm{mol}}}{\mathrm{HCl}+: \stackrel{\ddot{\mathrm{C}}}{\mathrm{Cl}} .} \text {. } \Delta H^{\circ}=-189 \mathrm{~kJ} / \mathrm{mol}
$$

15.59

3,3-dimethyl-1-butene
2° carbocation
3^{0} carbocation
2-bromo-2,3-dimethylbutane

Addition of HBr without added peroxide occurs by an ionic mechanism and forms a 2° carbocation, which rearranges to a more stable 3° carbocation. The addition of H^{+}occurs first, followed by Br^{-}. Addition of HBr with added peroxide occurs by a radical mechanism and forms a 2° radical that does not rearrange. In the radical mechanism $\mathrm{Br} \cdot$ adds first, followed by H .

15.60

Step 2:

15.61
a.

e.

b.
 (from a.)
f.

c.

d.

g.

 (from b.)
15.62
a.

product

Chapter 15-22
b.

c.

15.63

b.

15.64
a. $\mathrm{CH}_{3}-\mathrm{CH}_{3} \xrightarrow[h \nu]{\mathrm{Br}_{2}} \mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{Br} \xrightarrow{\mathrm{K}^{+}-\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}} \mathrm{CH}_{2}=\mathrm{CH}_{2} \xrightarrow{\mathrm{Br}_{2}} \mathrm{BrCH}_{2}-\mathrm{CH}_{2} \mathrm{Br} \xrightarrow{2 \mathrm{NaNH}_{2}} \mathrm{HC} \equiv \mathrm{CH}$
b. $\underset{\text { (from a.) }}{\mathrm{HC} \equiv \mathrm{CH}} \xrightarrow{\mathrm{NaH}} \mathrm{HC} \equiv \mathrm{C}^{-} \xrightarrow[\text { (from a.) }]{\mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{Br}} \quad \mathrm{HC} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{3}$

c. $\underset{\substack{\mathrm{CH}_{2}=\mathrm{CH}_{2} \\ \text { (from a.) }}}{\text { mCPBA }} \xrightarrow[{\substack{\text { (from b.) } \\[2] \mathrm{H}_{2} \mathrm{O}}}]{\text { (1] } \mathrm{HC} \equiv \mathrm{C}^{-}} \mathrm{O} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
$\underset{\substack{\text { d. } \\ \text { (from b.) }}}{\mathrm{HC} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{3}} \xrightarrow{\mathrm{NaH}}{ }^{-} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{3} \xrightarrow[\text { (from a.) }]{\mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{Br}} \mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2} \mathrm{CH}_{3} \xrightarrow[\mathrm{NH}_{3}]{\mathrm{Na}}$

15.65

15.66

15.67

Then, repeat Steps [2] and [3].
15.68

15.69 For resonance structures $\mathbf{A - F}$, an additional resonance form can be drawn that moves the position of the three π bonds in the ring bonded to two OH groups.

Chapter 15-24

a.

b. Homolysis of the indicated OH bond is preferred because it allows the resulting radical to delocalize over both benzene rings. Cleavage of one of the other OH bonds gives a radical that delocalizes over only one of the benzene rings.
15.70 Abstraction of the labeled H forms a highly resonance-stabilized radical. Four of the possible resonance structures are drawn.

15.71 The monomers used in radical polymerization always contain double bonds.
a.

polyisobutylene
b.

poly(ethyl acrylate)

$$
\text { (used in Latex paints) } \quad \mathrm{Et}=\mathrm{CH}_{2} \mathrm{CH}_{3}
$$

$\Longrightarrow \mathrm{CH}_{2}=\mathrm{CHCO}_{2} \mathrm{Et}$
15.72
a.

b.

15.73 Polystyrene has H atoms bonded to benzylic carbons, carbons bonded directly to a benzene ring. These $\mathrm{C}-\mathrm{H}$ bonds are unusually weak because the radical that results from homolysis is resonance stabilized.

15.74

Propagation:

Termination:

Chapter 15-26
15.75
a.

\qquad

A

b. The OCH_{3} group stabilizes an intermediate carbocation by resonance. This makes \mathbf{A} react faster than styrene in cationic polymerization.

15.76

alternating copolymer
15.77

15.78

molecular formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Cl}_{2}$
Integration:
(57 units +29 units)/6 H's $=14$ units per H one signal is 57 units/ 14 units per $\mathrm{H}=4 \mathrm{H}$'s second signal is 29 units/14 units per $\mathrm{H}=2 \mathrm{H}$'s
${ }^{1} \mathrm{H}$ NMR data:
quintet at 2.2 (2 H 's) split by 4 H 's triplet at 3.7 (4 H 's) split by 2 H 's
15.79
a.

b. Initiation: $\quad: \ddot{\mathrm{C}} \frac{\Gamma}{\rho} \ddot{\mathrm{C}} \mathrm{l}: \xrightarrow[\text { or } \Delta]{h \nu}: \ddot{\mathrm{C}} \mid \cdot+\ddot{\mathrm{C}}:$

Propagation:

Termination: $: \ddot{\mathrm{C} \mid} \cdot \underset{+}{\sim} \ddot{\mathrm{C}} \mathrm{l}: \longrightarrow \ddot{\ddot{\mathrm{C}}|-\ddot{\mathrm{C}}|: ~}$
X

15.80

$$
R \ddot{O} \underset{N}{\tilde{N}} \mathrm{O} R \longrightarrow R \ddot{0} \cdot+. \ddot{O} R
$$

Iermination: : c̣l• +
15.80

$+\mathrm{H}-\ddot{\mathrm{O}} \mathrm{R}$

15.81 a. The triphenylmethyl radical is highly resonance stabilized, because the radical can be delocalized on each of the benzene rings. As an example using one ring:

Chapter 15-28

b. First, draw the resonance form of the radical that places the unpaired electron on the C that forms the new $\mathrm{C}-\mathrm{C}$ bond.

c. Hexaphenylethane formation would require two very crowded 3° radicals to combine. The formation of \mathbf{A} results from a radical on one of the six-membered rings, which is much more accessible for reaction.
d. The ${ }^{1} \mathrm{H}$ NMR spectrum of hexaphenylethane should show signals only in the aromatic region ($7-8 \mathrm{ppm}$), whereas the ${ }^{1} \mathrm{H}$ NMR spectrum of \mathbf{A} will also have signals for the $s p^{2}$ hybridized $\mathrm{C}-\mathrm{H}$ bonds ($4.5-6.0 \mathrm{ppm}$) of the alkenes, as well as the single H on the $s p^{3}$ hybridized carbon. The ${ }^{13} \mathrm{C}$ NMR spectrum of hexaphenylethane should consist of lines due to the $4^{\circ} \mathrm{C}$'s and the aromatic C^{\prime} 's. For A , the ${ }^{13} \mathrm{C}$ NMR spectrum will also have lines for the $s p^{3}$ and $s p^{2}$ hybridized C's that are not contained in the aromatic rings.
15.82

Initiation: $\quad \mathrm{R}_{3} \mathrm{SnH}+\cdot \mathrm{Z} \longrightarrow \mathrm{R}_{3} \mathrm{Sn} \cdot+\mathrm{HZ}$
Propagation:

15.83

Chapter 16 Conjugation, Resonance, and Dienes

Chapter Review

Conjugation and delocalization of electron density

- The overlap of p orbitals on three or more adjacent atoms allows electron density to delocalize, thus adding stability (16.1).
- An allyl carbocation $\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}{ }^{+}\right)$is more stable than a 1° carbocation because of p orbital overlap (16.2).
- In a system $\mathrm{X}=\mathrm{Y}-\mathrm{Z}$:, Z is generally $s p^{2}$ hybridized to allow the lone pair to occupy a p orbital, making the system conjugated (16.5).

Four common examples of resonance (16.3)

[1] The three atom "allyl" system:
$X=Y-Z \not{ }_{\star} \longleftrightarrow{ }_{\star}-Y=Z \quad *=+,-, \cdot$ or $\cdot \cdot$
[2] Conjugated double bonds:

[3] Cations having a positive charge adjacent to a lone pair:

[4] Double bonds having one atom more electronegative than the other:

Rules on evaluating the relative "stability" of resonance structures (16.4)

[1] Structures with more bonds and fewer charges are more stable.

[2] Structures in which every atom has an octet are more stable.

[3] Structures that place a negative charge on a more electronegative element are more stable.

The unusual properties of conjugated dienes

[1] The $\mathrm{C}-\mathrm{C} \sigma$ bond joining the two double bonds is unusually short (16.8).
[2] Conjugated dienes are more stable than similar isolated dienes. ΔH° of hydrogenation is smaller for a conjugated diene than for an isolated diene converted to the same product (16.9).
[3] The reactions are unusual:

- Electrophilic addition affords products of 1,2-addition and 1,4-addition (16.10, 16.11).
- Conjugated dienes undergo the Diels-Alder reaction, a reaction that does not occur with isolated dienes (16.12-16.14).
[4] Conjugated dienes absorb UV light in the 200-400 nm region. As the number of conjugated π bonds increases, the absorption shifts to longer wavelength (16.15).

Reactions of conjugated dienes

[1] Electrophilic addition of HX $(\mathrm{X}=$ halogen $)(16.10,16.11)$

- The mechanism has two steps.
- Markovnikov's rule is followed. Addition of H^{+}forms the more stable allylic carbocation.
- The 1,2-product is the kinetic product. When H^{+}adds to the double bond, X^{-}adds to the end of the allylic carbocation to which it is closer ($\mathrm{C} 2 \operatorname{not} \mathrm{C} 4$). The kinetic product is formed faster at low temperature.
- The thermodynamic product has the more substituted, more stable double bond. The thermodynamic product predominates at equilibrium. With 1,3-butadiene, the thermodynamic product is the 1,4-product.
[2] Diels-Alder reaction (16.12-16.14)

- The reaction forms two σ and one π bond in a six-membered ring.
- The reaction is initiated by heat.
- The mechanism is concerted: all bonds are broken and formed in a single step.
- The diene must react in the s-cis conformation (16.13A).
- Electron-withdrawing groups in the dienophile increase the reaction rate (16.13B).
- The stereochemistry of the dienophile is retained in the product (16.13C).
- Endo products are preferred (16.13D).

Practice Test on Chapter Review

1. a. Which of the following statements is true about the Diels-Alder reaction?
2. The reaction is faster with electron-donating groups in the dienophile.
3. The reaction is endothermic.
4. The diene must adopt the s-cis conformation.
5. Statements (1) and (2) are true.
6. Statements (1), (2), and (3) are all true.
b. Which of the following statements is true about the absorption of ultraviolet light by unsaturated systems?
7. 1,4-Pentadiene requires light having a wavelength $<200 \mathrm{~nm}$ for electron promotion.
8. 1,3-Cyclohexadiene absorbs ultraviolet light with a wavelength $>200 \mathrm{~nm}$.
9. As the number of conjugated π bonds increases, the energy difference between the excited state and ground state decreases.
10. Statements (1) and (2) are true.
11. Statements (1), (2), and (3) are all true.
c. Which of the following compounds contains a labeled carbon atom that is $s p^{2}$ hybridized?

A

B

C
12. A only
13. B only
14. C only
15. A and B
16. A, B, and C
d. Which of the following represent valid resonance structures for \mathbf{A} ?

A
17.

2.

3.

4. Both (1) and (2) are valid resonance structures.
5. Structures (1), (2), and (3) are all valid.
2. Name the following compounds and indicate the conformation around the σ bond that joins the two double bonds.
a.

Chapter 16-4
b.

3. a. Consider the four hydrocarbons (A-D) drawn below. [1] Which compound absorbs the shortest wavelength of ultraviolet light? [2] Which compound absorbs the longest wavelength of ultraviolet light?

A

B

C

D
b. Consider the four dienes (A-D) drawn below. [1] Which diene is most reactive in the Diels-Alder reaction? [2] Which diene is the least reactive in the Diels-Alder reaction?

A

B

C

D
4. Draw the organic products formed in each reaction. In part (b), label the kinetic and thermodynamic products.
a.

b.

c.

[1] Δ
[2] $\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}$
indicate
stereochemistry
5. What diene and dienophile are needed to synthesize the following Diels-Alder adducts?
a.

b.

Answers to Practice Test

1.a. 3
b. 5
c. 4
d. 1
2.a. (4Z,6E)-6,7-diethyl-2-methyl-4,6-decadiene, s-trans
b. (2Z,4E)-3-ethyl-6,6-dimethyl-2,4-nonadiene, s-trans
3.a. [1] A; [2] C
b. [1] D; [2] A
4.a.

(both H's up or both H's down)
b.

kinetic
+

c.

5.a.

b.

Answers to Problems

16.1 Isolated dienes have two double bonds separated by two or more σ bonds.

Conjugated dienes have two double bonds separated by only one σ bond.
a.

b.

One σ bond separates two double bonds = conjugated diene
Two σ bonds separate two double bonds = isolated diene
c.

One σ bond separates two double bonds = conjugated diene
d.

Four σ bonds separate two double bonds = isolated diene
16.2 Conjugation occurs when there are overlapping p orbitals on three or more adjacent atoms. Double bonds separated by two σ bonds are not conjugated.
a.

All of the carbon atoms are $s p^{2}$ hybridized. Each π bond is separated by only one σ bond. conjugated
b.

The two π bonds are separated by three σ bonds.

NOT conjugated
c.

The two π bonds are separated by only one σ bond. conjugated
d.

Three adjacent carbon atoms are $s p^{2}$ hybridized and have an unhybridized p orbital.
conjugated
16.3 Two resonance structures differ only in the placement of electrons. All σ bonds stay in the same place. Nonbonded electrons and π bonds can be moved. To draw the hybrid:

- Use a dashed line between atoms that have a π bond in one resonance structure and not the other.
- Use a δ symbol for atoms with a charge or radical in one structure but not the other.
a.

resonance hybrid:

The + charge is delocalized on two carbons.
b.
 resonance hybrid:

c.

resonance hybrid:

16.4 $\mathrm{S}_{\mathrm{N}} 1$ reactions proceed via a carbocation intermediate. Draw the carbocation formed on loss of Cl and compare. The more stable the carbocation, the faster the $\mathrm{S}_{\mathrm{N}} 1$ reaction.

16.5
a.

Move the charge and the double bond.
b.

Move the lone pair.
Move the charge and the double bond.
d.

Move the charge and the double bond.
16.6 To compare the resonance structures remember:

- Resonance structures with more bonds are better.
- Resonance structures in which every atom has an octet are better.
- Resonance structures with neutral atoms are better than those with charge separation.
- Resonance structures that place a negative charge on a more electronegative atom are better.

Chapter 16-8
16.7

16.8 Remember that in any allyl system, there must be p orbitals to delocalize the lone pair.
a.

$s p^{2}$ hybridized trigonal planar geometry
b.

$s p^{2}$ hybridized
trigonal planar geometry
c.

$s p^{2}$ hybridized trigonal planar geometry
16.9 The \boldsymbol{s}-cis conformation has two double bonds on the same side of the single bond.

The \boldsymbol{s}-trans conformation has two double bonds on opposite sides of the single bond.
a. $(2 E, 4 E)-2,4$-octadiene in the s-trans conformation
 s-trans
b. $(3 E, 5 Z)-3,5$-nonadiene in the s-cis conformation
double bonds on opposite sides

c. $(3 Z, 5 Z)-4,5$-dimethyl-3,5-decadiene in both the s-cis and s-trans conformations

16.10

16.11 Bond length depends on hybridization and percent s-character. Bonds with a higher percent s-character have smaller orbitals and are shorter.

$s p$ hybridized carbons 50% s-character shortest bond

intermediate length

16.12 Two equivalent resonance structures delocalize the π bond and the negative charge.

16.13 The less stable (higher energy) diene has the larger heat of hydrogenation. Isolated dienes are higher in energy than conjugated dienes, so they will have a larger heat of hydrogenation.
a.

or

Double bonds separated by two σ bonds = isolated diene larger heat of hydrogenation one σ bond = conjugated diene smaller heat of hydrogenation
b.
 or

Double bonds separated by two σ bonds = isolated diene larger heat of hydrogenation
16.14 Isolated dienes are higher in energy than conjugated dienes. Compare the location of the double bonds in the compounds below.

0 conjugated double bonds least stable

2 conjugated double bonds intermediate stability

3 conjugated double bonds most stable
16.15 Conjugated dienes react with HX to form 1,2- and 1,4-products.
a.

b.

isolated diene
c.

d.
 $\xrightarrow{\mathrm{HCl}}$

A
$+$

This double bond is more reactive, so \mathbf{C} is probably a minor product because it results from HCl addition to the less reactive double bond.
16.16 The mechanism for addition of DCl has two steps:
[1] Addition of \mathbf{D}^{+}forms a resonance-stabilized carbocation.
[2] Nucleophilic attack of $\mathbf{C l}^{-}$forms 1,2- and 1,4-products.

16.17 Label the products as 1,2 - or 1,4-products. The 1,2-product is the kinetic product, and the 1,4 -product, which has the more substituted double bond, is the thermodynamic product.

16.18 To draw the products of a Diels-Alder reaction:
[1] Find the 1,3-diene and the dienophile.
[2] Arrange them so the diene is on the left and the dienophile is on the right.
[3] Cleave three bonds and use arrows to show where the new bonds will be formed.
a.

diene dienophile
b.

$$
\begin{aligned}
& \text { Rotate to } \\
& \text { make it } s \text {-cis. }
\end{aligned}
$$

c.

dienophile

diene

Rotate to make it s-cis.
16.19 For a diene to be reactive in a Diels-Alder reaction, a diene must be able to adopt an \boldsymbol{s}-cis conformation.

s-trans cannot rotate unreactive

s-cis
most reactive
The diene is always in the s-cis conformation.
16.20 Zingiberene reacts much faster than β-sesquiphellandrene as a Diels-Alder diene because its diene is constrained in the s-cis conformation. The diene in β-sesquiphellandrene is constrained in the s-trans conformation, so it is unreactive in the Diels-Alder.
16.21 Electron-withdrawing substituents in the dienophile increase the reaction rate.

16.22 A cis dienophile forms a cis-substituted cyclohexene.

A trans dienophile forms a trans-substituted cyclohexene.

16.23 The endo product (with the substituents under the plane of the new six-membered ring) is the preferred product.
a.
 $+$

endo substituent
b.
 $\xrightarrow{\Delta}$ COOCH3
16.24 To find the diene and dienophile needed to make each of the products:
[1] Find the six-membered ring with a $\mathrm{C}-\mathrm{C}$ double bond.
[2] Draw three arrows to work backwards.
[3] Follow the arrows to show the diene and dienophile.
a.

c.

16.25

16.26 Conjugated molecules absorb light at a longer wavelength than molecules that are not conjugated.
a.
conjugated
longer wavelength
b.

or
all double bonds conjugated
longer wavelength

one set of conjugated dienes
16.27 Sunscreens contain conjugated systems to absorb UV radiation from sunlight. Look for conjugated systems in the compounds below.
a.

b.

not a conjugated system
c.

conjugated system could be a sunscreen

16.28

a.

(2Z,4E)-3,4-dimethyl-2,4-heptadiene
b.

(2E,4Z)-3,4-dimethyl-2,4-octadiene
16.29
a.

b.

16.30 Use the definition from Answer 16.1.

3π bonds with only
1σ bond between conjugated

3π bonds with 2 or more σ bonds between NOT conjugated

2 multiple bonds with only
1σ bond between conjugated

1π bond with
an adjacent $s p^{2}$ hybridized atom
The lone pair occupies a p orbital, so there are p orbitals on three adjacent atoms.
conjugated

Chapter 16-14

16.31

16.32

a.

d. $\mathrm{CH}_{3} \ddot{O}-\mathrm{CH}=\mathrm{CH}-\stackrel{+}{\mathrm{C}} \mathrm{H}_{2} \longleftrightarrow \mathrm{CH}_{3} \stackrel{\square}{\square}-\stackrel{+}{\mathrm{C}} \mathrm{H}-\mathrm{CH}=\mathrm{CH}_{2}$ $\mathrm{CH}_{3} \stackrel{+}{+}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
b.

c.

e.

f.

16.33
a.

b.

c.

d.

16.34 No additional resonance structures can be drawn for compounds (a) and (d).
b.

c.

16.35

resonance hybrid:
Five resonance structures delocalize the negative charge on five C's, making them all equivalent.

All of the carbons are identical in the anion.
16.36
a.

Resonance stabilization delocalizes the negative charge on 2 C 's after loss of a proton.
This makes propene more acidic than propane.
b. Draw the products of cleavage of the bond.

Two unstable radicals form.

One resonance-stabilized radical forms. This makes the bond dissociation energy lower because a more stable radical is formed.
16.37 Use the directions from Answer 16.9.
a. (3Z)-1,3-pentadiene in the s-trans conformation
 s-trans
b. (2E,4Z)-1-bromo-3-methyl-2,4-hexadiene

c. $(2 E, 4 E, 6 E)-2,4,6$-octatriene

d. $(2 E, 4 E)$-3-methyl-2,4-hexadiene in the s-cis conformation

Chapter 16-16
16.38

16.39

2E,4E

$2 E, 4 Z$

$2 Z, 4 E$

16.40
a.
 and

(3E)-1,3,5-hexatriene both s-cis
(3E)-1,3,5-hexatriene both s-trans different conformations
c.
.
 and

(3E)-1,3,5-hexatriene (3Z)-1,3,5-hexatriene different stereoisomers
b.

(3Z)-1,3,5-hexatriene both s-cis

(3Z)-1,3,5-hexatriene both s-trans
different conformations
16.41 Use the directions from Answer 16.13 and recall that more substituted double bonds are more stable.
conjugated diene
one tetra-, one disubstituted
double bond
smallest

heat of hydrogenation \begin{tabular}{c}
conjugated diene

one di-, one trisubstituted

double bond

smaller intermediate

heat of hydrogenation

\quad

one di-, one trisubstituted

double bond

larger intermediate

heat of hydrogenation

\quad

isolated diene

both disubstituted

double bonds

largest
\end{tabular}

16.42 Conjugated dienes react with HX to form 1,2- and 1,4-products.
a.

major product, formed by addition of HBr to the more substituted $\mathrm{C}=\mathrm{C}$
isolated diene
b.

c.

1,4-product

1,4-product
(E and Z isomers can form.)

1,2-product
(E and Z isomers) 1,4-product
16.43

16.44

16.45 To draw the mechanism for reaction of a diene with HBr and ROOR, recall from Chapter 15 that when an alkene is treated with HBr under these radical conditions, the Br ends up on the carbon with more H's to begin with.

Chapter 16-18

16.46
a, b.

Y is the kinetic product because of the proximity effect. H and Cl add across two adjacent atoms.
\mathbf{Z} is the thermodynamic product because it has a more stable trisubstituted double bond.

Addition occurs at the labeled double bond due to the stability of the carbocation intermediate.
c.

The two resonance structures for this allylic cation are 3° and 2° carbocations.
more stable intermediate Addition occurs here.

If addition occurred at the other $\mathrm{C}=\mathrm{C}$, the following allylic carbocation would form:

The two resonance structures for this allylic cation are 1° and 2° carbocations.
16.47 Addition of HCl at the terminal double bond forms a carbocation that is highly resonance stabilized since it is both allylic and benzylic. Such stabilization does not occur when HCl is added to the other double bond. This gives rise to two products of electrophilic addition.

(+ three more resonance structures that delocalize the positive charge onto the benzene ring)
16.48 There are two possible products:

The 1,2-product is always the kinetic product because of the proximity effect. In this case, it is also the thermodynamic (more stable) product because it contains a more highly substituted $\mathrm{C}=\mathrm{C}$ (trisubstituted) than the 1,4-product (disubstituted). Thus, the 1,2-product is the major product at high and low temperature.
16.49 The electron pairs on O can be donated to the double bond through resonance. This increases the electron density of the double bond, making it less electrophilic and therefore less reactive in a Diels-Alder reaction.

16.50 Use the directions from Answer 16.18.
a.

b.

diene trans dienophile
trans-substituted products
c.

d.

diene dienophile
$\xrightarrow{\Delta}$

e.

diene

Chapter 16-20

16.51 Use the directions from Answer 16.24.
a.

b.

c.
 \Longrightarrow

d.

e.

f.

16.52

16.53

a.

b.

16.54

$+$

$$
\begin{array}{|c}
\hline \text { The major product is formed when the circled } \\
\text { carbons with a } \delta^{+} \text {and } \delta^{-} \text {react. } \\
\hline
\end{array}
$$

resonance hybrids:

For the 1,2-product, carbons with unlike charges would react. This is favored because the electron-rich and the electronpoor C's can bond.

For the 1,3-product, there are no partial charges of opposite sign on reacting carbons. This arrangement is less attractive.

Chapter 16-22
16.55

These are the only two double bonds that are conjugated and have the s-cis conformation needed for a Diels-Alder reaction.
16.56

16.57

a.

b.

c.

16.58

16.59 A transannular Diels-Alder reaction forms a tricyclic product from a monocyclic starting material.

16.60

16.61

Chapter 16-24
d.

e.

f.
conjugated diene

1,2-product

1,4-product
16.62 The more stable the carbocation, the faster the $\mathrm{S}_{\mathrm{N}} 1$ reaction. The carbocation from \mathbf{A} is more stable because the lone pairs on the O atom of the OCH_{3} afford additional resonance stabilization.

16.63 The mechanism is E1, with formation of a resonance-stabilized carbocation

16.64

a.

b. Dehydrohalogentaion generally forms the more stable product. In this reaction, loss of H from the β_{1} carbon forms a more stable conjugated diene, so this product is preferred even though it does not contain the more substituted $\mathrm{C}=\mathrm{C}$.

16.65

16.66

16.67

| isolated diene
 shortest wavelength
 1 | 2 conjugated bonds
 intermediate
 wavelength
 2 | 3 conjugated bonds
 intermediate
 wavelength |
| :---: | :---: | :---: | | 4 conjugated bonds |
| :---: |
| longest wavelength |

16.68

The phenol makes ferulic acid an antioxidant. Loss of H forms a highly \rightarrow stabilized phenoxy radical that inhibits radical formation during oxidation.

16.69 There are two possible modes of addition of HBr to allene. When H^{+}adds to the terminal carbon, a 2° vinyl carbocation is formed, which affords 2-bromo-1-propene after nucleophilic attack.

When H^{+}adds to the middle carbon, an intermediate carbocation with a $(+)$charge adjacent to the $\mathrm{C}=\mathrm{C}$ is formed. This carbocation is not resonance stabilized (at least initially), because the two $\mathrm{C}=\mathrm{C}$'s of allene are oriented 90° to each other, a geometry that does not allow for overlap of the $\mathrm{C}=\mathrm{C}$ with the empty p orbital of the carbocation.

As a result, path [1] forms a more stable carbocation and is preferred.

16.70

cyclohexanamine

N is surrounded by 3 atoms and 1 lone pair so it is $s p^{3}$ hybridized.
aniline

N has a lone pair on an atom adjacent to a $\mathrm{C}=\mathrm{C}$. N must be $s p^{2}$ hybridized to delocalize the lone pair by resonance.

Basicity is a measure of how willing an atom is to donate an electron pair. Since the lone pair on the N in aniline is delocalized on the benzene ring, it is less available for donation to a proton. This makes aniline much less basic.

16.71

The Diels-Alder reaction establishes the stereochemistry of the four carbons on the sixmembered ring. All four carbon atoms bonded to the six-membered ring are on the same side.
16.72

16.73

16.74 Retro Diels-Alder reaction forms a conjugated diene. Intramolecular Diels-Alder reaction then forms \mathbf{N}.

M

reaction

N

Chapter 17 Benzene and Aromatic Compounds

Chapter Review

Comparing aromatic, antiaromatic, and nonaromatic compounds (17.7)

- Aromatic compound
- Antiaromatic compound
- Antiaromatic -
- A cyclic, planar, completely conjugated compound that contains $4 n+2 \pi$ electrons ($n=0,1,2,3$, and so forth).
- An aromatic compound is more stable than a similar acyclic compound having the same number of π electrons.
- A cyclic, planar, completely conjugated compound that contains $4 n \pi$ electrons ($n=0,1,2,3$, and so forth).
- An antiaromatic compound is less stable than a similar acyclic compound having the same number of π electrons.
- A compound that is not - A compound that lacks one (or more) of the requirements to be aromatic aromatic or antiaromatic.

Properties of aromatic compounds

- Every carbon has a p orbital to delocalize electron density (17.2).
- They are unusually stable. ΔH^{0} for hydrogenation is much less than expected, given the number of degrees of unsaturation (17.6).
- They do not undergo the usual addition reactions of alkenes (17.6).
- ${ }^{1} \mathrm{H}$ NMR spectra show highly deshielded protons because of ring currents (17.4).

Examples of aromatic compounds with 6π electrons (17.8)

benzene

pyridine

pyrrole

cyclopentadienyl

tropylium cation

Examples of compounds that are not aromatic (17.8)

not cyclic

not planar

not completely conjugated

Chapter 17-2

Practice Test on Chapter Review

1. Give the IUPAC name for each of the following compounds.
a.

b.

c.

2. Label each compound as aromatic, nonaromatic, or antiaromatic. Choose only one possibility. Assume all completely conjugated rings are planar.
a.

c.

e.

g.

i.

b.

d.

f.

h.

j.

3. Answer the following questions about compounds $\mathbf{A}-\mathbf{E}$ drawn below.

A

B

C

D

E
a. How is nitrogen N_{a} in compound \mathbf{A} hybridized?
b. In what type of orbital does the lone pair on N_{a} reside?
c. How is nitrogen N_{b} in compound \mathbf{B} hybridized?
d. In what type of orbital does the lone pair on N_{b} reside?
e. Which of the labeled bonds in compound \mathbf{C} is the shortest?
f. Which of the labeled bonds in compound \mathbf{C} is the longest?
g. When considering both compounds \mathbf{D} and \mathbf{E}, which of the labeled hydrogen atoms $\left(H_{a}, H_{b}, H_{c}\right.$, or $\left.H_{d}\right)$ is the most acidic? Give only one answer.
h. When considering both compounds \mathbf{D} and \mathbf{E}, which of the labeled hydrogen atoms $\left(\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}, \mathrm{H}_{\mathrm{c}}\right.$, or $\left.\mathrm{H}_{\mathrm{d}}\right)$ is the least acidic? Give only one answer.

Answers to Practice Test

1.a. 2-sec-butyl-5-nitrophenol	2.a. nonaromatic	3.a. $s p^{2}$
b. o-isobutyltoluene	b. aromatic	b. p
c. 2-tert-butyl-4-nitrophenol	c. nonaromatic	c. $s p^{2}$
	d. antiaromatic	d. $s p^{2}$
	e. aromatic	e. 4
	f. nonaromatic	f. 3
	g. aromatic	g. H_{a}
	h. aromatic	h. H_{c}
	i. antiaromatic	

Answers to Problems

17.1 Move the electrons in the π bonds to draw all major resonance structures.

17.2 Look at the hybridization of the atoms involved in each bond. Carbons in a benzene ring are surrounded by three groups and are $s p^{2}$ hybridized.

17.3

- To name a benzene ring with one substituent, name the substituent and add the word benzene.
- To name a disubstituted ring, select the correct prefix (ortho $=1,2 ; \operatorname{meta}=1,3 ;$ para $=1,4$) and alphabetize the substituents. Use a common name if it is a derivative of that monosubstituted benzene.
- To name a polysubstituted ring, number the ring to give the lowest possible numbers and then follow other rules of nomenclature.
a.

C.

b.

p-ethyliodobenzene
d.

2-bromo-5-chlorotoluene
17.4 Work backwards to draw the structures from the names.
a. isobutylbenzene

isobutyl group
c. cis-1,2-diphenylcyclohexane

b. o-dichlorobenzene

d. m-bromoaniline

e. 4-chloro-1,2-diethylbenzene

f. 3-tert-butyl-2-ethyltoluene

17.5

propofol
17.6

Molecular formula $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}$: 4 degrees of unsaturation
IR absorption at $3150-2850 \mathrm{~cm}^{-1}: s p^{2}$ and $s p^{3}$ hybridized $\mathrm{C}-\mathrm{H}$ bonds
NMR absorptions (ppm):
1.4 (triplet, 6 H)
4.0 (quartet, 4 H)
6.8 (singlet, 4 H)

17.7 Count the different types of carbons to determine the number of ${ }^{13} \mathrm{C}$ NMR signals.

4 types of C 's in the benzene ring 6 signals
b.

All C's are different. 7 signals
c.

4 signals
17.8 The less stable compound has a larger heat of hydrogenation.

A
benzene ring, more stable smaller ΔH°

B
no benzene ring, less stable larger ΔH°
17.9 The protons on $s p^{2}$ hybridized carbons in aromatic hydrocarbons are highly deshielded and absorb at $6.5-8 \mathrm{ppm}$ whereas hydrocarbons that are not aromatic show an absorption at $4.5-6 \mathrm{ppm}$, typical of protons bonded to the $\mathrm{C}=\mathrm{C}$ of an alkene.
a.

b.

not aromatic alkene H's ~4.5-6 ppm
c.

17.10 To be aromatic, a ring must have $4 n+2 \pi$ electrons.

$$
\begin{gathered}
16 \pi \mathrm{e}^{-} \\
4 n \\
4(4)=16 \\
\text { antiaromatic }
\end{gathered}
$$

$$
\begin{gathered}
20 \pi \mathrm{e}^{-} \\
4 n \\
4(5)=20 \\
\text { antiaromatic }
\end{gathered}
$$

$22 \pi \mathrm{e}^{-}$
$4 n+2$
$4(5)+2=22$
aromatic

17.11

Chapter 17-6
17.12 In determining if a heterocycle is aromatic, count a nonbonded electron pair if it makes the ring aromatic in calculating $4 n+2$. Lone pairs on atoms already part of a multiple bond cannot be delocalized in a ring, and so they are never counted in determining aromaticity.
a.

b.

Count one lone pair from O .
$4 n+2=4(1)+2=6$ aromatic
no lone pair from O
$4 n+2=4(1)+2=6$ aromatic
c.

d.

With one lone pair from each O there would be 8 electrons. If O's are $s p^{3}$ hybridized, the ring is not completely conjugated.

Both N atoms are part of a double bond, so the lone pairs cannot be counted: there are 6 electrons. $4 n+2=4(1)+2=6$ aromatic
not aromatic

17.13

17.14

a. The five-membered ring is aromatic because it has 6π electrons, two from each π bond and two from the N atom that is not part of a double bond.

17.15 Since a neutral oxygen atom forms only two bonds, it must always donate its electron pair to a delocalized π electron system (like the N atom of pyrrole). It can never be part of a double bond, because it would carry a net $(+)$ charge. With nitrogen, however, a N atom can either donate an electron pair or be part of a double bond, since N forms three bonds. In a neutral five-membered aromatic ring, there are two π bonds (where the O atom cannot be located), and only one atom that can donate its electron pair (where the O atom may reside).
17.16 Compare the conjugate base of 1,3,5-cycloheptatriene with the conjugate base of cyclopentadiene. Remember that the compound with the more stable conjugate base will have a lower $\mathrm{p} K_{\mathrm{a}}$.

Since the conjugate base is unstable, the $\mathrm{p} K_{\mathrm{a}}$ of 1,3,5-cycloheptatriene is high.

Since the conjugate base is very stable, the $\mathrm{p} K_{\mathrm{a}}$ of cyclopentadiene is much lower.
17.17 The compound with the most stable conjugate base is the most acidic.
Conjugate bases:

no resonance delocalization
most unstable base so
least acidic acid

2 resonance structures
The acid is
intermediate in acidity.

aromatic conjugate base most stable
The acid is the most acidic.
17.18

17.19 To be aromatic, the ions must have $4 n+2 \pi$ electrons. Ions in (b) and (c) do not have the right number of π electrons to be aromatic.
a.

d.

10π electrons $4(2)+2=10$
aromatic
17.20

A=
The NMR indicates that \mathbf{A} is aromatic. The C's of the triple bond are $s p$ hybridized. Each triple bond has one set of electrons in p orbitals that overlap with other p orbitals on adjacent atoms in the ring. This overlap allows electrons to delocalize. Each C of the triple bonds also has a p orbital in the plane of the ring. The electrons in these p orbitals are localized between the C's of the triple bond, not delocalized in the ring. Although \mathbf{A} has $24 \pi \mathrm{e}^{-}$total, only $18 \mathrm{e}^{-}$are delocalized around the ring.

Chapter 17-8
17.21 In using the inscribed polygon method, always draw the vertex pointing down.

17.22 Draw the inscribed pentagons with the vertex pointing down. Then draw the molecular orbitals (MOs) and add the electrons.

17.23 C_{60} would exhibit only one ${ }^{13} \mathrm{C}$ NMR signal because all the carbons are identical.
17.24
a.

Answer: p-isopropyltoluene
seven lines in ${ }^{13} \mathrm{C}$ NMR (lettered $\mathrm{C}_{\mathrm{a}}-\mathrm{C}_{\mathrm{g}}$)
b.

Answer: 3-bromo-5-nitrophenol
All C's are different, so there are six lines in the ${ }^{13} \mathrm{C}$ NMR.
17.25
a.
 not completely conjugated not aromatic
b.

The six-membered ring is aromatic. The bicyclic ring system with the O atom is not completely conjugated, so it is nonaromatic.
17.26
a. If the Kekulé description of benzene was accurate, only one product would form in Reaction [1], but there would be four (not three) dibromobenzenes (A-D), because adjacent $\mathrm{C}-\mathrm{C}$ bonds are different-one is single and one is double. Thus, compounds \mathbf{A} and \mathbf{B} would not be identical. A has two Br's bonded to the same double bond, but B has two Br's on different double bonds.
b. In the resonance description, only one product would form in Reaction [1], since all C's are identical, but only three dibromobenzenes (ortho, meta, and para isomers) are possible.
\mathbf{A} and \mathbf{B} are identical because each $\mathrm{C}-\mathrm{C}$ bond is identical and intermediate in bond length between a $\mathrm{C}-\mathrm{C}$ single and $\mathrm{C}-\mathrm{C}$ double bond.

17.27

17.28 To name the compounds use the directions from Answer 17.3.
a.

sec-butylbenzene
b.
 m-chloroethylbenzene
c.

d.

o-chloroaniline
e.
 2,3-dibromoaniline
(OH at C 1$)$

2,5-dinitrophenol

Chapter 17-10
17.29
a. p-dichlorobenzene

b. m-chlorophenol

c. p-iodoaniline

d. o-bromonitrobenzene

e. 2,6-dimethoxytoluene

f. 2-phenyl-1-butene

g. 2-phenyl-2-propen-1-ol

h. trans-1-benzyl-3-phenylcyclopentane

or

17.30
a, b. constitutional isomers of molecular formula $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{Cl}$ and names of the trisubstituted benzenes

17.31 Count the electrons in the π bonds. Each π bond holds two electrons.
a.

10π electrons
b.

7π electrons
c.

10π electrons
d.

14π electrons
e.

12π electrons
17.32 To be aromatic, the compounds must be cyclic, planar, completely conjugated, and have $4 n+2 \pi$ electrons.
a.

Circled C's are not $s p^{2}$. not completely conjugated not aromatic
c.

12π electrons does not have $4 n+2$ π electrons not aromatic
b.

Circled C is not $s p^{2}$. not completely conjugated not aromatic
d.

12π electrons does not have $4 n+2$ π electrons not aromatic
17.33 In determining if a heterocycle is aromatic, count a nonbonded electron pair if it makes the ring aromatic in calculating $4 n+2$. Lone pairs on atoms already part of a multiple bond cannot be delocalized in a ring, and so they are never counted in determining aromaticity.
a.

6π electrons
counting a lone pair from S
$4(1)+2=6$
aromatic
c.

e.

not aromatic
g.

6π electrons counting the lone pair from N
$4(1)+2=6$ aromatic

b.

6π electrons
counting a lone pair from O
$4(1)+2=6$
aromatic
d.

10π electrons
$4(2)+2=10$ aromatic
f.

6π electrons,
counting a lone pair from O

$$
\begin{aligned}
& 4(1)+2=6 \\
& \text { aromatic }
\end{aligned}
$$ aromatic Count

h.

17.34

a.

Circled C's are not $s p^{2}$. not aromatic
b.

10π electrons in 10 -membered ring $4(2)+2=10$

17.35

A resonance structure can be drawn for \mathbf{A} that places a negative charge in the five-membered ring and a positive charge in the seven-membered ring. This resonance structure shows that each ring has six π electrons, making it aromatic. The molecule possesses a dipole such that the seven-membered ring is electron deficient and the five-membered ring is electron rich.
17.36 Each compound is completely conjugated. A compound with $4 n+2 \pi$ electrons is especially stable, while a compound with $4 n \pi$ electrons is especially unstable.

pentalene
8π electrons
$4(2)=8$
antiaromatic
unstable

azulene
10π electrons
$4(2)+2=10$ aromatic
very stable

heptalene
12π electrons
$6(2)=12$
antiaromatic
unstable
17.37

a. Each N atom is $s p^{2}$ hybridized.
b. The three unlabeled N atoms are $s p^{2}$ hybridized with lone pairs in one of the $s p^{2}$ hybrid orbitals. The labeled N has its lone pair in a p orbital.
c. 10π electrons
d. Purine is cyclic, planar, completely conjugated, and has 10π electrons $[4(2)+2]$ so it is aromatic.
17.38

C
a. 16 total π electrons
b. 14π electrons delocalized in the ring. [Note: Two of the electrons in the triple bond are localized between two C's, perpendicular to the π electrons delocalized in the ring.]
c. By having two of the p orbitals of the $\mathrm{C}-\mathrm{C}$ triple bond co-planar with the p orbitals of all the $\mathrm{C}=\mathrm{C}$'s, the total number of π electrons delocalized in the ring is $14.4(3)+2=14$, so the ring is aromatic.
17.39 A second resonance structure can be drawn for the six-membered ring that gives it three π bonds, thus making it aromatic with six π electrons.

17.40 The rate of an $\mathrm{S}_{\mathrm{N}} 1$ reaction increases with increasing stability of the intermediate carbocation.

Increasing stability
17.41

17.42 α-Pyrone reacts like benzene because it is aromatic. A second resonance structure can be drawn showing how the ring has six π electrons. Thus, α-pyrone undergoes reactions characteristic of aromatic compounds-that is, substitution rather than addition.

17.43
a. $\dot{\Delta} \longleftrightarrow \Delta \overleftrightarrow{\Delta} \longleftrightarrow \Delta$.
cyclopropenyl radical
b.

Chapter 17-14
c.

17.44

Naphthalene can be drawn as three resonance structures:

In two of the resonance structures bond (a) is a double bond, and bond (b) is a single bond. Therefore, bond (b) has more single bond character, making it longer.
17.45

Furan is less resonance stabilized than pyrrole because its O atom is less basic, so it donates electron density less "willingly." Thus, charge-separated resonance forms are more minor contributors to the hybrid than the charge-separated resonance forms of pyrrole.
17.46 The compound with the more stable conjugate base is the stronger acid. Draw and compare the conjugate bases of each pair of compounds.
conjugate bases
a.

or
 more acidic

resonance-stabilized but not aromatic
or

6π electrons, aromatic more stable conjugate base Its acid is more acidic.
b.

more acidic

or
6π electrons, aromatic more stable conjugate base Its acid is more acidic.
antiaromatic highly destabilized conjugate base
17.47

The conjugate base of indene has 10π electrons, making it aromatic and very stable. Therefore, indene is more acidic than many hydrocarbons.
17.48

A
H_{b} is most acidic because its conjugate base is aromatic (6π electrons).

17.49

Both pyrrole and the conjugate base of pyrrole have 6π electrons in the ring, making them both aromatic. Thus, deprotonation of pyrrole does not result in a gain of aromaticity since the starting material is aromatic to begin with.

Cyclopentadiene is not aromatic, but the conjugate base has 6π electrons and is therefore aromatic. This makes the $\mathrm{C}-\mathrm{H}$ bond in cyclopentadiene more acidic than the N-H bond in pyrrole, since deprotonation of cyclopentadiene forms an aromatic conjugate base.
17.50
a.

Protonation at C 2 forms conjugate acid \mathbf{A} because the positive charge can be delocalized by resonance. There is no resonance stabilization of the positive charge in \mathbf{B}.

Chapter 17-16

> b.
> A
> $\mathrm{p} K_{\mathrm{a}}=0.4$
> Loss of a proton from \mathbf{A} (which is not aromatic) gives two electrons to N, and forms pyrrole, which has six π electrons that can then delocalize in the five-membered ring, making it aromatic. This makes deprotonation a highly favorable process, and A more acidic.

$+\mathrm{N}-\mathrm{H}$
$=-$Both \mathbf{C} and its conjugate base pyridine are aromatic. Since \mathbf{C} has six π electrons, it is already aromatic to begin with, so there is less to $\mathrm{p} K_{\mathrm{a}}=5.2$ be gained by deprotonation, and \mathbf{C} is thus less

b. Even if cyclooctatetraene were flat, it has two unpaired electrons in its HOMOs (nonbonding MOs) so it cannot be aromatic.
c. The dianion has 10π electrons.
d. The two additional electrons fill the nonbonding MOs; that is, all the bonding and nonbonding MOs are filled with electrons in the dianion.
e. The dianion is aromatic since its HOMOs are completely filled, and it has no electrons in antibonding MOs.
17.52

17.53 The number of different types of C's = the number of signals.
a.

5 different C's
b.

all unique 9 different C's
c.

3 different C's

4 different C's
17.54 Draw the three isomers and count the different types of carbons in each. Then match the structures with the data.

17.55
a. $\mathrm{C}_{10} \mathrm{H}_{14}$: IR absorptions at $3150-2850\left(s p^{2}\right.$ and $s p^{3}$ hybridized $\left.\mathrm{C}-\mathrm{H}\right), 1600$, and 1500 (due to a benzene ring) cm^{-1}
${ }^{1} H$ NMR data:

Absorption	ppm	\# of H's	Explanation		
doublet	1.2	6	6 H 's adjacent to 1 H		
singlet	2.3	3	CH_{3}		
septet	3.1	1	1 H adjacent to 6 H 's		
multiplet	$7-7.4$	4	a disubstituted benzene ring		

You can't tell from these data where the two groups are on the benzene ring. They are not para, since the para arrangement usually gives two sets of distinct peaks (resembling two doublets) so there are two possible structures - ortho and meta isomers.

or

b. $\quad \mathrm{C}_{9} \mathrm{H}_{12}:{ }^{13} \mathrm{C}$ NMR signals at 21,127 , and $138 \mathrm{ppm} \rightarrow$ means three different types of C 's. ${ }^{1} H$ NMR shows two types of H's: 9 H's probably means $3 \mathrm{CH}_{3}$ groups; the other 3 H 's are very deshielded so they are bonded to a benzene ring.
Only one possible structure fits:

c. $\mathrm{C}_{8} \mathrm{H}_{10}$: IR absorptions at $3108-2875\left(s p^{2}\right.$ and $s p^{3}$ hybridized $\left.\mathrm{C}-\mathrm{H}\right), 1606$, and 1496 (due to a benzene ring) cm^{-1}
${ }^{1} \mathrm{H}$ NMR data:

Absorption	ppm	\# of H's	Explanation
triplet	1.3	3	3 H 's adjacent to 2 H 's
quartet	2.7	2	2 H 's adjacent to $3 \mathrm{H} ' s$
multiplet	7.3	5	a monosubstituted benzene ring

Chapter 17-18
17.56
a. Compound A: Molecular formula $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}$

IR absorption at 3150-2850 ($s p^{2}$ and $s p^{3}$ hybridized C-H) cm^{-1}
${ }^{1} \mathrm{H}$ NMR data:

Absorption	ppm	\# of H's	Explanation
triplet	1.4	3	3 H 's adjacent to 2 H's
quartet	3.95	2	2 H 's adjacent to 3 H's
multiplet	$6.8-7.3$	5	a monosubstituted benzene ring

b. Compound B: Molecular formula $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}$

IR absorption at $1669(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR data:

Absorption	ppm	\# of H's	Explanation singlet
2.5	3	CH_{3} group	
singlet	3.8	3	CH_{3} group
doublet	6.9	2	2 H's on a benzene ring
doublet	7.9	2	2 H's on a benzene ring

Structure:

It would be hard to distinguish these two compounds with the given data.
17.57

basic structure of thymol

Thymol must have this basic structure, given the NMR and IR data since it is a trisubstituted benzene ring with one singlet and two doublets in the NMR at $\sim 6.9 \mathrm{ppm}$. However, which group $\left[\mathrm{OH}, \mathrm{CH}_{3}\right.$, or $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$] corresponds to X, Y, and Z is not readily distinguished with the given data. The correct structure for thymol is given.
17.58

${ }^{13} \mathrm{C}$ NMR has four lines that are located in the aromatic region
($\sim 110-155 \mathrm{ppm})$, corresponding to the four different types of
carbons in the aromatic ring of the para isomer. The ortho and
meta isomers have six different C's, and so six lines would be
expected for each of them.
17.59 Because tetrahydrofuran has a higher boiling point and is more water soluble, it must be more polar and have stronger intermolecular forces than furan. There are two contributing factors. One lone pair on furan's O atom is delocalized on the five-membered ring to make it aromatic. This makes it less available for H -bonding with water and other intermolecular interactions. Also, the $\mathrm{C}-\mathrm{O}$ bonds in furan are less polar than the $\mathrm{C}-\mathrm{O}$ bonds in tetrahydrofuran because of hybridization. The $s p^{2}$ hybridized C's of furan pull a little more electron density towards them than do the $s p^{3}$ hybridized C's of tetrahydrofuran. This counteracts the higher electronegativity of O compared to C to a small extent.

17.60
a, b.
 The ring system is aromatic with 10π electrons, 8π electrons from the double bonds and 2π electrons from the N atoms common to both rings.

Chapter 17-20
c.

\downarrow

\longleftrightarrow

17.61
a.

The enol form is more stable because the enol double bond makes a highly conjugated
system. The enol OH can also intramolecularly
hydrogen bond to the nearby carbonyl O atom.
b.

c. Curcumin is colored because it has many conjugated π electrons, which shift absorption of light from the UV to the visible region.
d. Curcumin is an antioxidant because it contains a phenol. Homolytic cleavage affords a resonance-stabilized phenoxy radical, which can inhibit oxidation from occurring, much like vitamin E and BHT in Chapter 15.

17.62 a. Pyrazole rings are aromatic because they have six π electrons-two from the lone pair on the N atom that is not part of the double bond and four from the double bonds.
b.

d. The N atom in the NH bond in the pyrazole ring is $s p^{2}$ hybridized with $33 \% s$-character, increasing the acidity of the $\mathrm{N}-\mathrm{H}$ bond. The $\mathrm{N}-\mathrm{H}$ bond of $\mathrm{CH}_{3} \mathrm{NH}_{2}$ contains an $s p^{3}$ hybridized N atom.
17.63 Both \mathbf{A} and \mathbf{B} are cyclic, and if the lone pair of electrons on N is in a p orbital, they are completely conjugated with 10π electrons, a number that satisfies Hückel's rule. To be aromatic, \mathbf{A} and \mathbf{B} must be planar, and the internal bond angles of \mathbf{A} and \mathbf{B} would be much larger than 120°, the theoretical bond angle of $s p^{2}$ hybridized C's. The fact that \mathbf{A} is aromatic means that the lone pair on N occupies a p orbital, so it can delocalize on the nine-membered ring. The stabilization gained by being aromatic is greater than any angle strain. With \mathbf{B}, the lone pair on N is also delocalized on the $\mathrm{C}=\mathrm{O}$, making it less available for donation to the ring, so the ring is not aromatic.

10π electrons

17.64 With 14π electrons in the double bonds, the system is aromatic [4(3) $+2=14 \pi$ electrons]. The ring current generated by the circulating π electrons deshields the protons on the $\mathrm{C}=\mathrm{C}$'s, so they absorb downfield ($8.14-8.67 \mathrm{ppm}$). The CH_{3} groups, however, are very shielded since they lie above and below the plane, so they absorb far upfield (-4.25 ppm). The dianion of \mathbf{C} now has 16π electrons, making it antiaromatic, so the position of the absorptions reverses. The $\mathrm{C}=\mathrm{C}$ protons are now shielded (-3 ppm), and the CH_{3} protons are now deshielded (21 ppm).

17.65 A second resonance structure for \mathbf{A} shows that the ring is completely conjugated and has six π electrons, making it aromatic and especially stable. A similar charge-separated resonance structure for \mathbf{B} makes the ring completely conjugated, but gives the ring four π electrons, making it antiaromatic and especially unstable.

17.66 The conversion of carvone to carvacrol involves acid-catalyzed isomerization of two double bonds and tautomerization of a ketone to an enol tautomer. In this case the enol form is part of an aromatic phenol. Each isomerization of a $\mathrm{C}=\mathrm{C}$ involves Markovnikov addition of a proton, followed by deprotonation.

(R)-carvone

carvacrol
17.67 Resonance structures for triphenylene:

Resonance structures A-H all keep three double and three single bonds in the three six-membered rings on the periphery of the molecule. This means that each ring behaves like an isolated benzene ring undergoing substitution rather than addition because the π electron density is delocalized within each six-membered ring. Only resonance structure I does not have this form. Each C-C bond of triphenylene has four (or five) resonance structures in which it is a single bond and four (or five) resonance structures in which it is a double bond.

Resonance structures for phenanthrene:

With phenanthrene, however, four of the five resonance structures keep a double bond at the labeled C's. (Only C does not.) This means that these two C's have more double bond character than other C-C bonds in phenanthrene, making them more susceptible to addition rather than substitution.
17.68

X

The negative charge and increased electron density make the carbon more shielded and shift the absorption upfield.

Y
 decreased electron density make the carbon deshielded and shift the absorption downfield.

Chapter 18 Reactions of Aromatic Compounds

Chapter Review

Mechanism of electrophilic aromatic substitution (18.2)

- Electrophilic aromatic substitution follows a two-step mechanism. Reaction of the aromatic ring with an electrophile forms a carbocation, and loss of a proton regenerates the aromatic ring.
- The first step is rate-determining.
- The intermediate carbocation is stabilized by resonance; a minimum of three resonance structures can be drawn. The positive charge is always located ortho or para to the new $\mathrm{C}-\mathrm{E}$ bond.

Three rules describing the reactivity and directing effects of common substituents (18.7-18.9)
[1] All ortho, para directors except the halogens activate the benzene ring.
[2] All meta directors deactivate the benzene ring.
[3] The halogens deactivate the benzene ring.
Summary of substituent effects in electrophilic aromatic substitution (18.6-18.9)

| Substituent | Inductive effect | Resonance
 effect | Reactivity | Directing effect |
| :--- | :--- | :--- | :--- | :--- | :--- |
| donating | none | activating | ortho, para | |
| [4] | withdrawing | donating | activating | ortho, para |

Chapter 18-2

Five examples of electrophilic aromatic substitution

[1] Halogenation-Replacement of H by Cl or Br (18.3)

- Polyhalogenation occurs on benzene rings substituted by OH and NH_{2} (and related substituents) (18.10A).

[2] Nitration-Replacement of H by NO_{2} (18.4)

[3] Sulfonation-Replacement of H by $\mathrm{SO}_{3} \mathrm{H}$ (18.4)

[4] Friedel-Crafts alkylation-Replacement of H by R (18.5)

- Rearrangements can occur.
- Vinyl halides and aryl halides are unreactive.
- The reaction does not occur on benzene rings substituted by meta deactivating groups or NH_{2} groups (18.10B).
- Polyalkylation can occur.

[5] Friedel-Crafts acylation-Replacement of H by RCO (18.5)

- The reaction does not occur on benzene rings substituted by meta deactivating groups or NH_{2} groups (18.10B).

Nucleophilic aromatic substitution (18.13)

[1] Nucleophilic substitution by an addition-elimination mechanism

$$
\begin{aligned}
& \mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I} \\
& \mathrm{~A}=\text { electron-withdrawing group }
\end{aligned}
$$

- The mechanism has two steps.
- Strong electron-withdrawing groups at the ortho or para position are required.
- Increasing the number of electronwithdrawing groups increases the rate.
- Increasing the electronegativity of the halogen increases the rate.
[2] Nucleophilic substitution by an elimination-addition mechanism

- Reaction conditions are harsh.
- Benzyne is formed as an intermediate.
- Product mixtures may result.

Other reactions of benzene derivatives

[1] Benzylic halogenation (18.14)

[2] Oxidation of alkyl benzenes (18.15A)

- A benzylic $\mathrm{C}-\mathrm{H}$ bond is needed for reaction.

Chapter 18-4

[3] Reduction of ketones to alkyl benzenes (18.15B)

[4] Reduction of nitro groups to amino groups (18.15C)

Practice Test on Chapter Review

1. a. Which of the following statements is true about an ethoxy substituent $\left(-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ on a benzene ring?
2. $\mathrm{OCH}_{2} \mathrm{CH}_{3}$ increases the rates of both electrophilic substitution and nucleophilic substitution.
3. $\mathrm{OCH}_{2} \mathrm{CH}_{3}$ decreases the rates of both electrophilic substitution and nucleophilic substitution.
4. $\mathrm{OCH}_{2} \mathrm{CH}_{3}$ increases the rate of electrophilic substitution and decreases the rate of nucleophilic substitution.
5. $\mathrm{OCH}_{2} \mathrm{CH}_{3}$ decreases the rate of electrophilic substitution and increases the rate of nucleophilic substitution.
6. None of these statements is true.
b. Which of the following statements is true about a $-\mathrm{CO}_{2} \mathrm{CH}_{3}$ group on a benzene ring?
7. $\mathrm{CO}_{2} \mathrm{CH}_{3}$ increases the rates of both electrophilic substitution and nucleophilic substitution.
8. $\mathrm{CO}_{2} \mathrm{CH}_{3}$ decreases the rates of both electrophilic substitution and nucleophilic substitution.
9. $\mathrm{CO}_{2} \mathrm{CH}_{3}$ increases the rate of electrophilic substitution and decreases the rate of nucleophilic substitution.
10. $\mathrm{CO}_{2} \mathrm{CH}_{3}$ decreases the rate of electrophilic substitution and increases the rate of nucleophilic substitution.
11. None of these statements is true.
c. Which of the following is not a valid resonance structure for the carbocation that results from ortho attack of an electrophile on $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{CH}_{2}$?
12.

3.

5.

2.

4.

2. Draw the organic products formed in the following reactions.
a.

e.

b.

f.

c.

g.

d.

h.

3. (a) Considering the compound drawn below, which ring is most reactive in electrophilic aromatic substitution? Which ring is the least reactive in electrophilic aromatic substitution?

4. Classify each substituent as [1] ortho, para activating, [2] ortho, para deactivating, or [3] meta deactivating.
a. -Br
b. $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$
c. -COOH
d. $-\mathrm{NHCOCH}_{2} \mathrm{CH}_{3}$
e. $-\mathrm{N}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{COCH}_{3}$
f. $-\mathrm{CCl}_{3}$
5. What reagents are needed to convert toluene $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}\right)$ to each compound?
a. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$
c. p-bromotoluene
e. p-ethyltoluene
b. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Br}$
d. o-nitrotoluene
f.

Chapter 18-6

Answers to Practice Test

1. a. $3 \quad 2$.
b. 4
c. 4
a.

b.

c.

d.

e.

f.

g.

h.

2. a. A
b. C
3. a. 2
b. 1
c. 3
d. 1
e. 1
f. 3
4. a. KMnO_{4}
b. $\mathrm{Br}_{2}, h \nu$
c. $\mathrm{Br}_{2}, \mathrm{FeBr}_{3}$
d. $\mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$
e. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}, \mathrm{AlCl}_{3}$
f. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}, \mathrm{AlCl}_{3}$

Answers to Problems

18.1 The π electrons of benzene are delocalized over the six atoms of the ring, increasing benzene's stability and making them less available for electron donation. With an alkene, the two π electrons are localized between the two C's, making them more nucleophilic and thus more reactive with an electrophile than the delocalized electrons in benzene.
18.2

18.3 Reaction with Cl_{2} and FeCl_{3} as the catalyst occurs in two parts. First is the formation of an electrophile, followed by a two-step substitution reaction.
[1]

electrophile
[2]
 resonance-stabilized carbocation
[3]

18.4 There are two parts in the mechanism. The first part is formation of an electrophile. The second part is a two-step substitution reaction.

[2]

[3]

18.5 Friedel-Crafts alkylation results in the transfer of an alkyl group from a halogen to a benzene ring. In Friedel-Crafts acylation an acyl group is transferred from a halogen to a benzene ring.
a.

b.

c.

Chapter 18-8
18.6 Remember that an acyl group is transferred from a Cl atom to a benzene ring. To draw the acid chloride, substitute a Cl for the benzene ring.
a.

c.

b.

18.7 To be reactive in a Friedel-Crafts alkylation reaction, the X must be bonded to an $s p^{3}$ hybridized carbon atom.
a.

unreactive
b.

reactive
c.

unreactive
d.

reactive
18.8 The product has an "unexpected" carbon skeleton, so rearrangement must have occurred.
[1]

[2]

[3]

18.9 Both alkenes and alcohols can form carbocations for Friedel-Crafts alkylation reactions.
a.

c.

d.

18.10

[1]

[2]

[3]

18.11 In parts (b) and (c), a 1,2-shift occurs to afford a rearrangement product.
a.

c.

b.

18.12
a. $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ alkyl group electron donating
b. -Br halide electron withdrawing
c. $-\mathrm{OCH}_{2} \mathrm{CH}_{3}$ electronegative O electron withdrawing
18.13 Electron-donating groups place a negative charge in the benzene ring. Draw the resonance structures to show how $-\mathrm{OCH}_{3}$ puts a negative charge in the ring. Electron-withdrawing groups place a positive charge in the benzene ring. Draw the resonance structures to show how $-\mathrm{COCH}_{3}$ puts a positive charge in the ring.
a.

b.

18.14 To classify each substituent, look at the atom bonded directly to the benzene ring. All R groups and Z groups (except halogens) are electron donating. All groups with a positive charge, δ^{+}, or halogens are electron withdrawing.
a.

lone pair on O electron donating
b.

halogen
electron withdrawing
c.

R group
electron donating
18.15 Electron-donating groups make the compound react faster than benzene in electrophilic aromatic substitution. Electron-withdrawing groups make the compound react more slowly than benzene in electrophilic aromatic substitution.
a.

electron withdrawing
reacts slower

electron withdrawing
reacts slower
d.

halogen electron withdrawing reacts slower

e.

18.16 Electron-donating groups make the compound more reactive than benzene in electrophilic
18.16 Electron-donating groups make the compound more reactive than benzene in electrophilic
aromatic substitution. Electron-withdrawing groups make the compound less reactive than benzene in electrophilic aromatic substitution.
a.

R group
electron donating
b.

two OH's
electron donating more reactive
c.

C with 2 electronegative O 's electron withdrawing
d.

electron withdrawing less reactive
more reactive
less reactive
R group ectron donating

lone pairs on O ectron donating
18.17

halogen electron withdrawing least reactive

intermediate reactivity

lone pairs on O electron donating most reactive
18.18 Chlorine inductively withdraws electron density and decreases the rate of electrophilic aromatic substitution. The closer the Cl is to the ring, the larger the effect it has. The larger the number of Cl's, the larger the effect.

least reactive

intermediate reactivity

most reactive
18.19 Especially stable resonance structures have all atoms with an octet. Carbocations with additional electron donor R groups are also more stable structures. Especially unstable resonance structures have adjacent like charges.
a.

b.

All atoms have an octet.
c.

18.20 Polyhalogenation occurs with highly activated benzene rings containing $\mathrm{OH}, \mathrm{NH}_{2}$, and related groups with a catalyst.
a.

b.

c.

18.21 Friedel-Crafts reactions do not occur with strongly deactivating substituents including NO_{2}, or with $\mathrm{NH}_{2}, \mathrm{NR}_{2}$, or NHR groups.
a.
 strongly deactivating
b.

Cl is an o, p director.
c. $\sim \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2} \xrightarrow[\mathrm{AlCl}_{3}]{\mathrm{CH}_{3} \mathrm{Cl}} \begin{gathered}\text { no Friedel-Crafts } \\ \text { reaction }\end{gathered}$
d.

18.22 To draw the product of reaction with these disubstituted benzene derivatives and HNO_{3}, $\mathrm{H}_{2} \mathrm{SO}_{4}$ remember:

- If the two directing effects reinforce each other, the new substituent will be on the position reinforced by both.
- If the directing effects oppose each other, the stronger activator wins.
- No substitution occurs between two meta substituents.
a.

c.

b.
OCH_{3} directing effects

18.23

18.24
a.

b.

18.25

18.26

a.

b.

c.

18.27

18.28 This reaction proceeds via a radical bromination mechanism and two radicals are possible: $\mathbf{A}\left(2^{\circ}\right.$ and benzylic) and $\mathbf{B}\left(1^{\circ}\right)$. Since \mathbf{B} (which leads to $\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}\right)$ is much less stable, this radical is not formed so only $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}(\mathrm{Br}) \mathrm{CH}_{3}$ is formed as product.

Chapter 18-14

18.29
a.

b.

c.

d.

(from c.)
18.30 First use an acylation reaction, and then reduce the carbonyl group to form the alkyl benzenes.
a.

b.

18.31

18.32

a.

b.

c.

(+ para isomer)

18.33

a.

b.

Both are o,p directors, but they are meta to each other. The alkyl group must be obtained by reduction of a carbonyl.
c.

Chapter 18-16
18.34

$$
\xrightarrow[\mathrm{AlCl}_{3}]{\text { c. } \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}}
$$

18.35 Intramolecular Friedel-Crafts acylation occurs on the more activated aromatic ring.

18.36 OH is an ortho, para director.
a.

g.

b.

h.
 (+ ortho isomer)
c.

i.

d.

e.

f.

18.37
a.

b.

c.

No Friedel-Crafts reaction

Chapter 18-18
d.

e.

18.38
a.

b.

c.

$+$

d.

e.

f.

g.

h.

i.

j.

18.39 Watch out for rearrangements.
a.
 $\downarrow 2^{\circ}$ carbocation

b.

c.

c.

d.

18.40

a.

b.

c.

d.

e.

f.

18.41

C bonded to 1 H can be added directly

Chapter 18-20
c.

Ethyl group can be introduced by two methods.
d.

18.42

18.43

D

$\mathrm{S}_{\mathrm{N}} 2$

$+$

Path [2] nucleophilic aromatic
substitution nbstion

$+\mathrm{NaH}$
18.44
a.

Step [1] won't work because a Friedel-Crafts reaction can't be done on a deactivated benzene ring, as is the case with the $\mathrm{SO}_{3} \mathrm{H}$ substituent. Even if Step [1] did work, the second step would introduce Cl meta to $\mathrm{SO}_{3} \mathrm{H}$, not para as drawn.
Alternate synthesis:

b.
 B

Step [1] involves a Friedel-Crafts alkylation using a 1° alkyl halide that will undergo rearrangement, so that a butyl group will not be introduced as a side chain.
Alternate synthesis:

18.45 Use the directions from Answer 18.16 to rank the compounds.
a.

least reactive

intermediate reactivity
b.

least reactive

intermediate reactivity

most reactive
c.

least reactive

intermediate reactivity

most reactive
d.

least reactive

intermediate reactivity

most reactive

18.46

[1]

a. withdraw
b. donate
c. less
d. deactivate
[2]

a. withdraw
a. withdraw
b. withdraw
b. donate
c. less
c. more
d. deactivate
d. activate
18.47
a.

more electron rich due to O atom more reactive
b.

c.

more electron rich due to C atom more reactive

Chapter 18-22

18.48

a.
 faster

b.

less electron rich
due to (+) charge on N
c.
 due to (+) charge on N and electron-withdrawing NO_{2} group slower

18.49
a.

With ortho and para attack there is additional resonance stabilization that delocalizes the positive charge onto the second benzene ring. Such additional stabilization is not possible with meta attack.
Ortho attack:

Meta attack:

Para attack:

b.

With ortho and para attack there is additional resonance stabilization that delocalizes the positive charge onto the nitroso group. Such additional stabilization is not possible with meta attack. This makes -NO an ortho, para director. Since the N atom bears a partial $(+)$ charge (because it is bonded to a more electronegative O atom), the - NO group inductively withdraws electron density, thus deactivating the benzene ring towards electrophilic attack. In this way, the -NO group resembles the halogens. Thus, the electron-donating resonance effect makes -NO an o,p director, but the electron-withdrawing inductive effect makes it a deactivator.

Ortho attack:

Meta attack:

Para attack:

Chapter 18-24
18.50

R stabilizes $(+)$ charges on the o, p positions by an electron-donating inductive effect. This group behaves like any other R group so that ortho and para products are formed in electrophilic aromatic substitution.

(+) charge on atom bonded to the benzene ring Drawing resonance structures in electrophilic aromatic substitution results in especially unstable structures for attack at the o,p positionstwo (+) charges on adjacent atoms. This doesn't happen with meta attack, so meta attack is preferred. This is identical to the situation observed with all meta directors.
18.51 Under the acidic conditions of nitration, the N atom of the starting material gets protonated, so the atom directly bonded to the benzene ring bears a $(+)$ charge. This makes it a meta director, so the new NO_{2} group is introduced meta to it.

18.52 Increasing the number of electron-withdrawing groups (especially at the ortho and para positions to the leaving group) increases the rate of nucleophilic aromatic substitution. Increasing the electronegativity of the halogen increases the rate.
a.

p-fluoronitro-
benzene
chlorobenzene least reactive benzene
most reactive
b.

1-fluoro-3,5-dinitrobenzene least reactive

c.

4-chloro-3-nitro- toluene
least reactive

4-fluoro-3-
nitrotoluene $\begin{array}{r}\text { benzene }\end{array}$
18.53 $\mathrm{A} \mathrm{CH}_{3} \mathrm{O}$ group has an electron-donating resonance effect. This stabilizes a $(+)$ charge, so it increases stability of the carbocation intermediate in electrophilic aromatic substitution. This destabilizes a $(-)$ charge, so it decreases the stability of the carbanion intermediate in nucleophilic aromatic substitution.
18.54

Use both resonance forms to show how two products are formed.

18.55

Chapter 18-26

18.57

a. The product has one stereogenic center.

b. The mechanism for Friedel-Crafts alkylation with this 2° halide involves formation of a trigonal planar carbocation. Since the carbocation is achiral, it reacts with benzene with equal probability from two possible directions (above and below) to afford an optically inactive, racemic mixture of two products.

18.58 The reaction follows the two-step addition-elimination mechanism for nucleophilic aromatic substitution.

Resonance structure \mathbf{A} is stabilized because the negative charge is located on an electronegative N . This makes nucleophilic aromatic substitution on 2-chloropyridine faster than a similar reaction with chlorobenzene, which has no N atom to stabilize the intermediate negative charge.
18.59 Since there is no electron-withdrawing group on the benzene ring, the mechanism likely proceeds via elimination-addition.

Chapter 18-28
18.60

A reaction that occurs by way of the more stable carbocation is preferred, so product \mathbf{A} is formed.
18.61

18.62

18.63 Benzyl bromide forms a resonance-stabilized intermediate that allows it to react rapidly under $\mathrm{S}_{\mathrm{N}} 1$ conditions.

Formation of a resonance-stabilized carbocation:

The electron-withdrawing NO_{2} group will destabilize the carbocation so the benzylic halide will be less reactive, while the electron-donating OCH_{3} group will stabilize the carbocation, so the benzylic halide will be more reactive.
18.64

Chapter 18-30
b.

c.

d.

e.

f.

g.

 (+ para isomer) (+ isomer)

18.65

a.

(+ ortho isomer)
b.

c.
 (+ isomer)
d.

e.

18.66

a.

b.

c.

d.

Chapter 18-32
e.

f.

g.

18.67
a.

b.

18.68
a.

b.

c.

d.

e.

f.

18.69 One possibility:

Chapter 18-34
18.70

18.71 Use integration data and the molecular formula to determine the number of H's that give rise to each signal (Section 14.5, How To).
${ }^{1} \mathrm{H}$ NMR data of compound $\mathbf{A}\left(\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{Br}\right)$:

Absorption	ppm	\# of H's	Explanation
triplet	1.2	3	3 H's adjacent to 2 H's
quartet	2.6	2	2 H's adjacent to 3 H's
two signals	7.1 and 7.4	$2+2$	para disubstituted benzene

${ }^{1} \mathrm{H}$ NMR data of compound $\mathbf{B}\left(\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{Br}\right)$:

Absorption	ppm	\# of H's	Explanation
triplet	3.1	2	2 H's adjacent to 2 H's
triplet	3.5	2	2 H 's adjacent to 2 H's
multiplet	$7.1-7.4$	5	monosubstituted benzene

18.72 IR absorption at $1717 \mathrm{~cm}^{-1}$ means compound \mathbf{C} has a $\mathrm{C}=\mathrm{O}$.
${ }^{1} \mathrm{H}$ NMR data of compound $\mathbf{C}\left(\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}\right)$:

Absorption	$\mathbf{p p m}$	\# of H's	Explanation
singlet	2.1	3	3 H 's
triplet	2.8	2	2 H 's adjacent to 2 H's
triplet	2.9	2	2 H's adjacent to 2 H's
multiplet	$7.1-7.4$	5	monosubstituted benzene

18.73

${ }^{1} \mathrm{H}$ NMR data of compound $\mathbf{X}\left(\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}\right)$:

Absorption	$\mathbf{p p m}$	\# of H's	Explanation
doublet	1.3	6	6 H 's adjacent to 1 H
septet	3.5	1	1 H adjacent to 6 H 's
multiplet	$7.4-8.1$	5	monosubstituted benzene

${ }^{1} \mathrm{H}$ NMR data of compound $\mathbf{Y}\left(\mathrm{C}_{10} \mathrm{H}_{14}\right)$:

Absorption	ppm	\# of H's
doublet	0.9	6
multiplet	1.8	1
doublet	2.5	2
multiplet	$7.1-7.3$	5

Explanation
6 H 's adjacent to 1 H
1 H adjacent to many H's
2 H 's adjacent to 1 H
monosubstituted benzene

Structure:

18.74

18.75 Five resonance structures can be drawn for phenol, three of which place a negative charge on the ortho and para carbons. These illustrate that the electron density at these positions is increased, thus shielding the protons at these positions and shifting the absorptions to lower chemical shift. Similar resonance structures cannot be drawn with a negative charge at the meta position, so it is more deshielded and absorbs farther downfield, at higher chemical shift.

$(-)$ charges on the ortho and para positions

Chapter 18-36
18.76 a. Pyridine: The electron-withdrawing inductive effect of N makes the ring electron poor. Also, electrophiles E^{+}can react with N , putting a positive charge on the ring. This makes the ring less reactive with another positively charged species.

To understand why substitution occurs at C3, compare the stability of the carbocation formed by attack at C2 and C3.

Electrophilic attack on N :

Electrophilic attack at C2:

N does not have an octet.
(+) charge on an electronegative N atom
poor resonance structure
attack at C 2 does not occur

Electrophilic attack at C3:

better resonance structures

Since attack at C3 forms a more stable carbocation, attack at C3 occurs. Attack at C4 generates a carbocation of similar stability to attack at C 2 , so attack at C 4 does not occur.
b. Pyrrole is more reactive than benzene because the C's are more electron rich. The lone pair on N has an electron-donating resonance effect.

Since attack at C2 forms a more stable carbocation, electrophilic substitution occurs at C2.

18.77

18.78 Draw a stepwise mechanism for the following intramolecular reaction, which was used in the synthesis of the female sex hormone estrone.

18.79 a. In quinoline the lone pair on N occupies an $s p^{2}$ hybrid orbital, so it can never be donated to the ring by resonance. The N atom decreases the electron density of the ring in which it is located by an electron-withdrawing inductive effect, so substitution occurs on the other ring. In indole, the N atom donates its electron pair (which is contained in a p orbital) to the five-membered ring, increasing its electron density, so substitution occurs on the fivemembered ring with the N atom.
b. In the presence of acid, the N atom is protonated prior to electrophilic attack. For substitution to occur at C 8 rather than C 7 , the carbocation that results from electrophilic addition at C8 must be more stable. Attack at C8 generates a carbocation with more resonance structures and four structures keep one ring aromatic (1-4). Attack at C7 generates a carbocation with fewer resonance structures and only two have an intact aromatic ring (5 and 6).

c. With indole, attack at C 3 forms the more highly resonance-stabilized carbocation.

Chapter 18-40

Attack at C3 forms resonance structures, all of which have an intact aromatic ring, and two of which have all atoms with octets. Attack at C2 forms a cation with more resonance structures, but only two have an intact aromatic ring, and only one has complete octets.

18.80

Chapter 19 Carboxylic Acids and the Acidity of the O-H Bond

Chapter Review

General facts

- Carboxylic acids contain a carboxy group (COOH). The central carbon is $s p^{2}$ hybridized and trigonal planar (19.1).
- Carboxylic acids are identified by the suffixes -oic acid, carboxylic acid, or -ic acid (19.2).
- Carboxylic acids are polar compounds that exhibit hydrogen bonding interactions (19.3).

Summary of spectroscopic absorptions (19.4)

IR absorptions	$\mathrm{C}=\mathrm{O}$	$\sim 1710 \mathrm{~cm}^{-1}$
	$\mathrm{O}-\mathrm{H}$	$3500-2500 \mathrm{~cm}^{-1}$ (very broad and strong)
${ }^{1} \mathrm{H}$ NMR absorptions	$\mathrm{O}-\mathrm{H}$	$10-12 \mathrm{ppm}$ (highly deshielded proton)
	$\mathrm{C}-\mathrm{H} \alpha$ to COOH	$2-2.5 \mathrm{ppm}$ (somewhat deshielded $\mathrm{C} s p^{3}-\mathrm{H}$)
${ }^{13}$ C NMR absorption	$\mathrm{C}=\mathrm{O}$	$170-210 \mathrm{ppm}$ (highly deshielded carbon)

General acid-base reaction of carboxylic acids (19.9)

- Carboxylic acids are especially acidic because carboxylate anions are resonance stabilized.
- For equilibrium to favor the products, the base must have a conjugate acid with a $\mathrm{p} K_{\mathrm{a}}>5$. Common bases are listed in Table 19.3.

Factors that affect acidity

Resonance effects. A carboxylic acid is more acidic than an alcohol or phenol because its conjugate base is more effectively stabilized by resonance (19.9).

Inductive effects. Acidity increases with the presence of electron-withdrawing groups (like the electronegative halogens) and decreases with the presence of electron-donating groups (like polarizable alkyl groups) (19.10).

Substituted benzoic acids.

- Electron-donor groups (D) make a substituted benzoic acid less acidic than benzoic acid.
- Electron-withdrawing groups (W) make a substituted benzoic acid more acidic than benzoic acid.
\(\xrightarrow[\substack{less acidic

higher \mathrm{p} K_{\mathrm{a}}

\mathrm{p} K_{\mathrm{a}}>4.2}]{\mathrm{p} K_{\mathrm{a}}=4.2}\)| more acidic |
| :---: |
| lower $\mathrm{p} K_{\mathrm{a}}$ |
| $\mathrm{p} K_{\mathrm{a}}<4.2$ |

Increasing acidity

Other facts

- Extraction is a useful technique for separating compounds having different solubility properties. Carboxylic acids can be separated from other organic compounds by extraction, because aqueous base converts a carboxylic acid into a water-soluble carboxylate anion (19.12).
- A sulfonic acid $\left(\mathrm{RSO}_{3} \mathrm{H}\right)$ is a strong acid because it forms a weak, resonance-stabilized conjugate base on deprotonation (19.13).
- Amino acids have an amino group on the α carbon to the carboxy group $\left[\mathrm{RCH}\left(\mathrm{NH}_{2}\right) \mathrm{COOH}\right]$.

Amino acids exist as zwitterions at $\mathrm{pH} \approx 6$. Adding acid forms a species with a net $(+1)$ charge $\left[\mathrm{RCH}\left(\mathrm{NH}_{3}\right) \mathrm{COOH}\right]^{+}$. Adding base forms a species with a net (-1) charge $\left[\mathrm{RCH}\left(\mathrm{NH}_{2}\right) \mathrm{COO}\right]^{-}$(19.14).

Practice Test on Chapter Review

1. a. Give the IUPAC name for the following compound.

b. Draw the structure corresponding to the following name: sodium m-bromobenzoate.
2. a. Which of the labeled atoms is least acidic?

b. Which of the following carboxylic acids has the lowest $\mathrm{p} K_{\mathrm{a}}$?
3.

3.

c. Which compound(s) can be converted to \mathbf{A} by an oxidation reaction?

3. Rank the following compounds in order of increasing basicity. Label the least basic compound as $\mathbf{1}$, the most basic compound as $\mathbf{3}$, and the compound of intermediate basicity as $\mathbf{2}$.

A

B

C
4. Draw the organic products formed in each of the following reactions.
a.

c.

b.

Answers to Practice Test

1.a. cis-2-methylcyclo-
pentanecarboxylic acid
$\begin{array}{rrr}\text { 2.a. } 1 & \text { 3. } \mathbf{A}-2 & \text { 4.a. } \\ \text { b. } 5 & \mathbf{B}-1 & \\ \text { c. } 5 & \mathbf{C}-3 & \end{array}$

b.

b.

c.

Chapter 19-4

Answers to Problems

19.1 To name a carboxylic acid:
[1] Find the longest chain containing the COOH group and change the $-e$ ending to -oic acid.
[2] Number the chain to put the COOH carbon at C 1 , but omit the number from the name.
[3] Follow all other rules of nomenclature.
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\stackrel{-}{\mathrm{C}}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$

Number the chain to put COOH at C 1 . 6 carbon chain = hexanoic acid
3,3-dimethylhexanoic acid
b.

Number the chain to put COOH at C 1 . 5 carbon chain = pentanoic acid

4-chloropentanoic acid
c.

Number the chain to put COOH at C 1 . 6 carbon chain = hexanoic acid 2,4-diethylhexanoic acid

Number the chain to put COOH at C 1 . 9 carbon chain = nonanoic acid
4-isopropyl-6,8-dimethyInonanoic acid
19.2
a. 2-bromobutanoic acid

b. 2,3-dimethylpentanoic acid
c. 3,3,4-trimethylheptanoic acid

d. 2-sec-butyl-4,4-diethylnonanoic acid
e. 3,4-diethylcyclohexanecarboxylic acid

f. 1-isopropylcyclobutanecarboxylic acid

19.3

b. β-phenylpropionic acid

d. α-chloro- β-methylbutyric acid

19.4
a.

b.
 sodium formate or
lithium benzoate

c. α, β-dimethylcaproic acid

c.

potassium 2-methylpropanoate

sodium 4-bromo-6-ethyloctanoate
19.5

2-propylpentanoic acid

sodium 2-propylpentanoate
19.6 More polar molecules have a higher boiling point and are more water soluble.

least polar lowest boiling point least $\mathrm{H}_{2} \mathrm{O}$ soluble

intermediate polarity intermediate boiling point

most polar highest boiling point most $\mathrm{H}_{2} \mathrm{O}$ soluble
19.7 Look for functional group differences to distinguish the compounds by IR. Besides $s p^{3}$ hybridized C-H bonds at $3000-2850 \mathrm{~cm}^{-1}$ (which all three compounds have), the following functional group absorptions are seen:

19.8

> Molecular formula: $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ one degree of unsaturation

> ¹H NMR data (ppm):
> 0.95 (triplet, 3 H)
> 1.65 (multiplet, 2 H)
> 2.30 (triplet, 2 H)
> 11.8 (singlet, 1 H)

There are five tetrahedral stereogenic centers. Both double bonds can exhibit cis-trans isomerism. Therefore, there are $2^{7}=128$ stereoisomers.
19.10 1° Alcohols are converted to carboxylic acids by oxidation reactions.

b.

c.

19.9

enantiomer

Chapter 19-6
19.11
a.

$\xrightarrow{\mathrm{KMnO}_{4}}$

(Any R group with benzylic H's can be present para to NO_{2}.)
b.

d.

19.12
a.

c.

b.

d.

19.13 $\mathrm{CH}_{3} \mathrm{COOH}$ has a $\mathrm{p} K_{\mathrm{a}}$ of 4.8. Any base having a conjugate acid with a $\mathrm{p} K_{\mathrm{a}}$ higher than 4.8 can deprotonate it.
a. $\mathrm{F}^{-} \mathrm{p} K_{\mathrm{a}}(\mathrm{HF})=3.2$ not strong enough
b. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CO}^{-} \mathrm{pK} \mathrm{a}\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}\right]=18$ strong enough
c. $\mathrm{CH}_{3}{ }^{-} \mathrm{pK} \mathrm{a}_{\mathrm{a}}\left(\mathrm{CH}_{4}\right)=50$ strong enough
d. $-\mathrm{NH}_{2} \mathrm{pK} \mathrm{a}_{\mathrm{a}}\left(\mathrm{NH}_{3}\right)=38$ strong enough
e. $\mathrm{Cl}^{-} \mathrm{p} K_{\mathrm{a}}(\mathrm{HCl})=-7.0$ not strong enough
19.14

19.15 Electron-withdrawing groups make an acid more acidic, lowering its $\mathrm{p} K_{\mathrm{a}}$.

$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{COOH}$	$\mathrm{ICH}_{2}-\mathrm{COOH}$	$\mathrm{CF}_{3}-\mathrm{COOH}$
least acidic	one electron-withdrawing group	three electron-withdrawing F's
$\mathrm{p} K_{\mathrm{a}}=4.9$	intermediate acidity	most acidic
	$\mathrm{p} K_{\mathrm{a}}=3.2$	$\mathrm{p} K_{\mathrm{a}}=0.2$

19.16
a. $\mathrm{CH}_{3} \mathrm{COOH}$
least acidic

$\mathrm{HSCH}_{2} \mathrm{COOH}$
 intermediate acidity

$\mathrm{HOCH}_{2} \mathrm{COOH}$
most acidic
b. $\mathrm{ICH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
least acidic
$\mathrm{ICH}_{2} \mathrm{COOH}$
intermediate acidity
19.17
a.

b.

least acidic

intermediate acidity

19.18

Phenol \mathbf{A} has a higher $\mathrm{p} K_{\mathrm{a}}$ than phenol because of its substituents. Both the OH and CH_{3} are electron-donating groups, which make the conjugate base less stable. Therefore, the acid is less acidic.
19.19 To separate compounds by an extraction procedure, they must have different solubility properties.
a. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$: YES. The acid can be extracted into aqueous base, while the alkene will remain in an organic layer.
b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ and $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O}$: NO. Both compounds are soluble in organic solvents and insoluble in water. Neither is acidic enough to be extracted into aqueous base.
c. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{COOH}$ and NaCl : one carboxylic acid, one salt: YES. The carboxylic acid is soluble in an organic solvent while the salt is soluble in water.
d. NaCl and KCl : two salts: $\mathbf{N O}$.
19.20

weaker conjugate base better leaving group			stronger conjugate base worse leaving group
$\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$	$\rightarrow \quad \mathrm{CF}_{3} \mathrm{SO}_{3}^{-}$	$\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}$	$\longrightarrow \mathrm{CH}_{3} \mathrm{SO}_{3}^{-}$
CF_{3} is electron withdrawing. stronger acid lower $\mathrm{p} K_{\mathrm{a}}$		CH_{3} is electron do weaker acid higher $\mathrm{p} K_{\mathrm{a}}$	ating.

19.21
phenylalanine
methionine

R

S

Chapter 19-8
19.22 Since amino acids exist as zwitterions (i.e., salts), they are too polar to be soluble in organic solvents like diethyl ether. Thus, they are soluble in water.
19.23

19.24
$\mathrm{p} I=\frac{\mathrm{p} K_{\mathrm{a}}(\mathrm{COOH})+\mathrm{p} K_{\mathrm{a}}\left(\mathrm{NH}_{3}{ }^{+}\right)}{2}=\frac{(2.58)+(9.24)}{2}=5.91$

19.25

19.26

a. 2,5-dimethylhexanoic acid
b.

c. sodium 2,5-dimethylhexanoate
d. An alcohol or ether would have a much higher $\mathrm{p} K_{\mathrm{a}}$ than a carboxylic acid.

19.27

least acidic

a. 3-ethyl-3-methylcyclohexanecarboxylic acid , NaOH
b.

c. sodium 3-ethyl-3-methylcyclohexanecarboxylate
d.

19.28 Use the directions from Answer 19.1 to name the compounds.
a. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$ 4-methylpentanoic acid
b. $\mathrm{BrCH}_{2} \mathrm{COOH}$ 2-bromoacetic acid
or 2-bromoethanoic acid
c.

d. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{-} \mathrm{Li}^{+}$lithium butanoate
e.

f.

19.29
a. 3,3-dimethylpentanoic acid

d. β, β-dichloropropionic acid

e. m-hydroxybenzoic acid

19.30

pentanoic acid

sodium pentanoate

3-methylbutanoic acid

sodium 3-methylbutanoate

2-methylbutanoic acid
 sodium 2-methylbutanoate

2,2-dimethylpropanoic acid

sodium
2,2-dimethylpropanoate

Chapter 19-10
19.31
a.

IUPAC: 2-hydroxypropanoic acid common: α-hydroxypropionic acid
b.

IUPAC: 3,5-dihydroxy-3-methylpentanoic acid common: β, δ-dihydroxy- β-methylvaleric acid
19.32
a.

lowest boiling point
intermediate boiling point

highest boiling point

b.

lowest boiling point

intermediate boiling point

highest boiling point
19.33

c.

d. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{2} \mathrm{OH} \frac{\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}}{\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O}} \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{COOH}$
19.34
a.

c.

19.35

Bases: [1] ${ }^{-} \mathrm{OH} \mathrm{p} \mathrm{K}_{\mathrm{a}}\left(\mathrm{H}_{2} \mathrm{O}\right)=15.7$; [2] $\mathrm{CH}_{3} \mathrm{CH}_{2}^{-} \mathrm{p} \mathrm{K}_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{CH}_{3}\right)=50$; [3] ${ }^{-} \mathrm{NH}_{2} \mathrm{p} \mathrm{K}_{\mathrm{a}}\left(\mathrm{NH}_{3}\right)=38$;
[4] $\mathrm{NH}_{3} \mathrm{p} K_{\mathrm{a}}\left(\mathrm{NH}_{4}^{+}\right)=9.4 ;[5] \mathrm{HC} \equiv \mathrm{C}^{-} \mathrm{p} K_{\mathrm{a}}(\mathrm{HC} \equiv \mathrm{CH})=25$.
a.

$\mathrm{p} K_{\mathrm{a}}=4.3$
All of the bases can deprotonate this.

$\mathrm{p} K_{\mathrm{a}}=9.4$
$-\mathrm{OH}, \mathrm{CH}_{3} \mathrm{CH}_{2}^{-},-{ }^{-} \mathrm{NH}_{2}$, and $\mathrm{HC} \equiv \mathrm{C}^{-}$ can deprotonate this.
c. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$
$\mathrm{p} K_{\mathrm{a}}=18$
$\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{-},{ }^{-} \mathrm{NH}_{2}$, and $\mathrm{HC}=\mathrm{C}^{-}$ can deprotonate this.
19.36
a.
 $\mathrm{HOC}\left(\mathrm{CH}_{3}\right)_{3}$
$\mathrm{pK}=18$

Reaction favors products.
$\mathrm{p} K_{\mathrm{a}}=4.2$
b.

Reaction favors reactants.
c.

 $+\mathrm{NH}_{3}+\mathrm{Na}^{+}$
$\mathrm{p} K_{\mathrm{a}}=38$

Reaction favors products.
$\mathrm{p} K_{\mathrm{a}}=10$

$+\mathrm{CH}_{3} \mathrm{Li}^{+} \rightleftarrows$

Reaction favors products.
e.

Reaction favors products.

f.

With the same $\mathrm{p} K_{\mathrm{a}}$ for the starting acid and the conjugate acid, an equal amount of starting materials and products is present.
19.37 The stronger acid has a lower $\mathrm{p} K_{\mathrm{a}}$ and a weaker conjugate base.
a.

carboxylic acid
stronger acid
lower $\mathrm{p} K_{\mathrm{a}}$
weaker conjugate base
or

alcohol weaker acid higher $\mathrm{p} K_{\mathrm{a}}$ stronger conjugate base

Cl is electron withdrawing. stronger acid lower $\mathrm{p} K_{\mathrm{a}}$ weaker conjugate base
b. $\mathrm{ClCH}_{2} \mathrm{COOH}$
or
$\mathrm{FCH}_{2} \mathrm{COOH}$ weaker acid higher $\mathrm{p} K_{\mathrm{a}}$ F is more electronegative. stronger acid lower $\mathrm{p} K_{\mathrm{a}}$ weaker conjugate base
$\mathrm{CH}_{3} \mathrm{COOH}$
c.

CH_{3} is electron donating. weaker acid higher $\mathrm{p} K_{\mathrm{a}}$
stronger conjugate base or
d. $\mathrm{NCCH}_{2} \mathrm{COOH}$ CN is electron withdrawing. stronger acid lower $\mathrm{p} K_{\mathrm{a}}$ weaker conjugate base
or
weaker acid higher $\mathrm{p} K_{\mathrm{a}}$ stronger conjugate base

19.38

a.

least acidic
b.

Br is electronegative intermediate acidity

intermediate acidity

Cl more electronegative most acidic

Chapter 19-12
19.39

19.40

	Increasing acidity				
	$\mathrm{ICH}_{2} \mathrm{COOH}$	$\mathrm{BrCH}_{2} \mathrm{COOH}$	$\mathrm{FCH}_{2} \mathrm{COOH}$	$\mathrm{F}_{2} \mathrm{CHCOOH}$	$\mathrm{F}_{3} \mathrm{CCOOH}$
pK	values	least acidic	2.86	2.66	1.24
most acidic					
	3.12				0.28

19.41 The OH of the phenol group in morphine is more acidic than the OH of the alcohol $\left(\mathrm{p} K_{\mathrm{a}} \approx 10\right.$ versus $\mathrm{p} K_{\mathrm{a}} \approx 16$). KOH is basic enough to remove the phenolic OH , the most acidic proton.

19.42 The closer the electron-withdrawing $\mathrm{CH}_{3} \mathrm{CO}$ - group is to the carboxylic acid, the more it will stabilize the conjugate base, making the acid stronger.

acetoacetic acid
stronger acid
weaker acid

19.43

a. The negative charge on the conjugate base of p-nitrophenol is delocalized on the NO_{2} group, stabilizing the conjugate base, and making p-nitrophenol more acidic than phenol (where the negative charge is delocalized only around the benzene ring).

b. In the para isomer, the negative charge of the conjugate base is delocalized over both the benzene ring and onto the NO_{2} group, whereas in the meta isomer it cannot be delocalized onto the NO_{2} group. This makes the conjugate base from the para isomer more highly resonance stabilized, and the para substituted phenol more acidic than its meta isomer.

19.44 $\mathrm{A} \mathrm{CH}_{3} \mathrm{O}$ group has an electron-withdrawing inductive effect and an electron-donating resonance effect. In 2-methoxyacetic acid, the OCH_{3} group is bonded to an $s p^{3}$ hybridized C, so there is no way to donate electron density by resonance. The $\mathrm{CH}_{3} \mathrm{O}$ group withdraws electron density because of the electronegative O atom, stabilizing the conjugate base, and making $\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{COOH}$ a stronger acid than $\mathrm{CH}_{3} \mathrm{COOH}$.

In p-methoxybenzoic acid, the $\mathrm{CH}_{3} \mathrm{O}$ group is bonded to an $s p^{2}$ hybridized C , so it can donate electron density by a resonance effect. This destabilizes the conjugate base, making the starting material less acidic than $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$.

19.45 Phenol has a $\mathrm{p} K_{\mathrm{a}}$ of 10 , making p-methylthiophenol $\left(\mathrm{p} K_{\mathrm{a}}=9.53\right)$ the stronger acid. A substituent that increases the acidity of a phenol must withdraw electron density to stabilize the negative charge of the conjugate base. An electron-withdrawing substituent deactivates a benzene ring towards electrophilic aromatic substitution, making p-methylthiophenol less reactive than phenol.

stronger electron-withdrawing inductive effect. This stabilizes the conjugate base of \mathbf{A}, making \mathbf{A} more acidic than \mathbf{C}.

Since the O in \mathbf{A} is closer to the COOH group than the O atom in \mathbf{B}, there is a stronger electron-withdrawing inductive effect. This makes A more acidic than B.

D

Since the benzene ring is bonded to the α carbon (not the carbonyl carbon), this compound is not much different than any alkylsubstituted carboxylic acid.

least acidic

E

The electron-withdrawing inductive effect of the NO_{2} group helps stabilize the COO^{-} group.
intermediate acidity

C

Since the NO_{2} group is bonded to a benzene ring that is bonded directly to the carbonyl group, inductive effects and resonance effects stabilize the conjugate base. For example, a resonance structure can be drawn that places a (+) charge close to the COO^{-}group.
most acidic

19.48

19.49
a.

1,3-cyclohexanedione increasing acidity: $\mathrm{H}_{\mathrm{b}}<\mathrm{H}_{\mathrm{a}}<\mathrm{H}_{\mathrm{c}}$

The most acidic proton forms the most stable conjugate base.
one Lewis structure least stable conjugate base loss of H_{a} :

2 resonance structures intermediate stability loss of H_{c} :

3 resonance structures most stable conjugate base

Chapter 19-16
b.
 increasing acidity: $\mathrm{H}_{\mathrm{a}}<\mathrm{H}_{\mathrm{c}}<\mathrm{H}_{\mathrm{b}}$

7 resonance structures most stable conjugate base

least stable conjugate base

2 resonance structures that delocalize the negative charge intermediate stability
19.50

stronger acid
OHO stronger conjugate base
weaker acid
19.51

19.52
 acetamide
somewhat less stable with the $(-)$ charge on N

O is more electronegative than N , making the conjugate base of $\mathrm{CH}_{3} \mathrm{COOH}$ more stable than the conjugate base of acetamide. Therefore, acetamide is less acidic.
19.53

A
B

- Dissolve both compounds in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
- Add $10 \% \mathrm{NaHCO}_{3}$ solution. This makes a carboxylate anion $\left(\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{COO}^{-}\right)$from \mathbf{B}, which dissolves in the aqueous layer. The other compound (\mathbf{A}) remains in the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
- Separate the layers.
19.54

- Dissolve both compounds in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
- Add $10 \% \mathrm{NaOH}$ solution. This converts $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ into a phenoxide anion, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}$, which dissolves in the aqueous solution. The alcohol remains in the organic layer (neutral) since it is not acidic enough to be deprotonated to any significant extent by NaOH .
- Separate the layers.
19.55 To separate two compounds in an aqueous extraction, one must be water soluble (or be able to be converted into a water-soluble ionic compound by an acid-base reaction), and the other insoluble. 1-Octanol has greater than 5 C's, making it insoluble in water. Octane is an alkane, also insoluble in water. Neither compound is acidic enough to be deprotonated by a base in aqueous solution. Since their solubility properties are similar, they cannot be separated by an extraction procedure.

19.56

c. Molecular formula: $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3} \longrightarrow 5$ double bonds or rings IR: $3500-2500 \mathrm{~cm}^{-1}, 1710 \mathrm{~cm}^{-1} \longrightarrow \mathrm{C}=\mathrm{O}$ and $\mathrm{O}-\mathrm{H}$
 NMR data: 4.7 (singlet, 2 H), 6.9-7.3 (multiplet, 5 H), and 11.3 (singlet, 1 H) ppm
monosubstituted benzene ring

Chapter 19-18
19.57

Compound A: Molecular formula $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ (one degree of unsaturation)
IR absorptions at 3600-3200(O-H), 3000-2800 (C-H), and $1700(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR data:

Absorption	ppm	\# of H's	Explanation	Structure:
singlet	2.2	3	a CH_{3} group	
singlet	2.55	1	1 H adjacent to none or OH	C
triplet	2.7	2	2 H's adjacent to 2 H's	$\mathrm{CH}_{3}{ }_{\text {a }} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
triplet	3.9	2	2 H's adjacent to 2 H's	

Compound B: Molecular formula $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ (one degree of unsaturation)
IR absorptions at $3500-2500(\mathrm{O}-\mathrm{H})$ and $1700(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$
${ }^{1}$ H NMR data:

Absorption	ppm	\# of H's	Explanation	Structure:
doublet	1.6	6	6 H 's adjacent to 1 H	CH 3
septet	2.3	1	1 H adjacent to $6 \mathrm{H} ' s$	$\mathrm{CH}_{3}-\mathrm{C}-\mathrm{COOH}$
singlet (very broad)	10.7	1	OH of RCOOH	H
B				

19.58

Compound \mathbf{C} : Molecular formula $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{3}$ (one degree of unsaturation)
IR absorptions at $3600-2500(\mathrm{O}-\mathrm{H})$ and $1734(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR data:

Absorption	ppm	\# of H's	Explanation	Structure:
triplet	1.2	3	a CH$_{3}$ group adjacent to 2 H's	
quartet	3.6	2	2 H 's adjacent to 3 H's	
singlet	4.1	2	2 H 's	C
singlet	11.3	1	OH of COOH	

19.59

Compound D: Molecular formula $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2}$ (five degrees of unsaturation)
${ }^{13}$ C NMR data: 30, 36, 128, 130, 133, 139, $179=7$ different types of C's
${ }^{1} H$ NMR data:

Absorption	ppm	\# of H's	Explanation	Structure:
triplet	2.7	2	2 H's adjacent to 2 H's	
triplet	2.9	2	2 H's adjacent to 2 H's	
two signals	7.2	4	on benzene ring	
singlet	11.7	1	OH of COOH	

19.60

Molecular formula: $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}_{4}$: 6 degrees of unsaturation IR $1692 \mathrm{~cm}^{-1}$ (C=O)
${ }^{1} \mathrm{H}$ NMR 8.2 and 10.0 ppm (singlets)

aromatic $\mathrm{H} \quad \mathrm{COOH}$

A
 3 different C's Spectrum [2]: peaks at 27, 39, 186 ppm

5 different C's
B COOH Spectrum [1]: peaks at $14,22,27,34,181 \mathrm{ppm}$

C

4 different C's
Spectrum [3]: peaks at $22,26,43,180 \mathrm{ppm}$
19.62

GBL: Molecular formula $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}$ (two degrees of unsaturation)
IR absorption at $1770(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR data:

Absorption	ppm	\# of H's	Explanation	Structure:
multiplet	2.28	2	2 H's adjacent to several H's	-
triplet	2.48	2	2 H's adjacent to 2 H's	$=0$
triplet	4.35	2	2 H's adjacent to 2 H's	GBL

19.63

19.64

enantiomer
zwitterion
19.65
a. methionine

19.66
a. cysteine $\mathrm{p} I=\frac{\mathrm{p} K_{\mathrm{a}}(\mathrm{COOH})+\mathrm{p} K_{\mathrm{a}}\left(\mathrm{NH}_{3}{ }^{+}\right)}{2}=(2.05)+(10.25) / 2=6.15$
b. methionine $\mathrm{p} I=\frac{\mathrm{p} K_{\mathrm{a}}(\mathrm{COOH})+\mathrm{p} \mathrm{K}_{\mathrm{a}}\left(\mathrm{NH}_{3}{ }^{+}\right)}{2}=(2.28)+(9.21) / 2=5.75$

Chapter 19-20
19.67

This lone pair is localized on the N atom, making it a base.

This lone pair is delocalized in the π system to give 10π electrons, making it aromatic. This is similar to pyrrole (Chapter 17). Since these electrons are delocalized in the aromatic system, this N atom in tryptophan is not basic.
19.68 The first equivalent of NH_{3} acts as a base to remove a proton from the carboxylic acid. A second equivalent then acts as a nucleophile to displace X to form the ammonium salt of the amino acid.

19.69

a. $\mathrm{At} \mathrm{pH}=1$, the charge is $(+1)$. most acidic proton is removed first, then the next most acidic proton, and so forth.
. monosodium glutamate

19.70 The first equivalent of NaH removes the most acidic proton-that is, the OH proton on the phenol. The resulting phenoxide can then act as a nucleophile to displace I to form a substitution product. With two equivalents, both OH protons are removed. In this case the more nucleophilic O atom is the stronger base-that is, the alkoxide derived from the alcohol (not the phenoxide), so this negatively charged O atom reacts first in a nucleophilic substitution reaction.

19.71

p-hydroxybenzoic acid less acidic than benzoic acid

The OH group donates electron density by its resonance effect and this destabilizes the conjugate base, making the acid less acidic than benzoic acid.

o-hydroxybenzoic acid
more acidic than benzoic acid
19.72

2-hydroxybutanedioic acid increasing acidity:
$\mathrm{H}_{\mathrm{d}}<\mathrm{H}_{\mathrm{c}}<\mathrm{H}_{\mathrm{b}}<\mathrm{H}_{\mathrm{e}}<\mathrm{H}_{\mathrm{a}}$
H_{a} and H_{e} must be the two most acidic protons since they are part of carboxylic acids. Loss of a proton forms a resonance-stabilized carboxylate anion that has the negative charge delocalized on two O atoms. H_{a} is more acidic than H_{e} because the nearby OH group on the α carbon increases acidity by an electron-withdrawing inductive effect. H_{b} is the next most acidic proton because the conjugate base places a negative charge on the electronegative O atom, but it is not resonance stabilized.

The least acidic H's are H_{c} and H_{d} since these H's are bonded to C atoms. The electronegative O atom further acidifies H_{c} by an electron-withdrawing inductive effect.

Chapter 19-22
19.73

The conjugate base has three resonance structures, two of which place a negative charge on the oxygens. In this way the conjugate base resembles a carboxylate anion. In addition, the $\mathrm{C}=\mathrm{C}$'s in \mathbf{A} and \mathbf{C} are conjugated.

Chapter 20 Introduction to Carbonyl Chemistry

Chapter Review

Reduction reactions

[1] Reduction of aldehydes and ketones to 1^{0} and 2° alcohols (20.4)

[2] Reduction of α, β-unsaturated aldehydes and ketones (20.4C)

[3] Enantioselective ketone reduction (20.6)

- A single enantiomer is formed.
[4] Reduction of acid chlorides (20.7A)

- LiAlH_{4}, a strong reducing agent, reduces an acid chloride to a 1° alcohol.
- With $\mathrm{LiAlH}\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right]_{3}$, a milder reducing agent, reduction stops at the aldehyde stage.

Chapter 20-2
[5] Reduction of esters (20.7A)

- LiAlH_{4}, a strong reducing agent, reduces an ester to a 1° alcohol.
- With DIBAL-H, a milder reducing agent, reduction stops at the aldehyde stage.
[6] Reduction of carboxylic acids to 1° alcohols (20.7B)

[7] Reduction of amides to amines (20.7B)

Oxidation reactions

Oxidation of aldehydes to carboxylic acids (20.8)

- All Cr ${ }^{6+}$ reagents except PCC oxidize RCHO to RCOOH .
- Tollens reagent $\left(\mathrm{Ag}_{2} \mathrm{O}+\right.$
$\left.\mathrm{NH}_{4} \mathrm{OH}\right)$ oxidizes RCHO only.
Primary $\left(1^{\circ}\right)$ and secondary $\left(2^{\circ}\right)$ alcohols do not react with Tollens reagent.

Preparation of organometallic reagents (20.9)

[1] Organolithium reagents:
[2] Grignard reagents:
[3] Organocuprate reagents:
$R-X+2 \mathrm{Li} \longrightarrow R-L i+L i X$
$\mathrm{R}-\mathrm{X}+\mathrm{Mg} \xrightarrow[\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{O}]{\mathrm{R}-\mathrm{Mg}-\mathrm{X}}$
$\mathrm{R}-\mathrm{X}+2 \mathrm{Li} \longrightarrow \mathrm{R}-\mathrm{Li}+\mathrm{LiX}$
$2 \mathrm{R}-\mathrm{Li}+\mathrm{CuI} \longrightarrow \mathrm{R}_{2} \mathrm{Cu}^{-} \mathrm{Li}^{+}+\mathrm{LiI}$
[4] Lithium and sodium acetylides:

Reactions with organometallic reagents

[1] Reaction as a base (20.9C)

- $\mathrm{RM}=\mathrm{RLi}, \mathrm{RMgX}, \mathrm{R}_{2} \mathrm{CuLi}$
- This acid-base reaction occurs with $\mathrm{H}_{2} \mathrm{O}$, $\mathrm{ROH}, \mathrm{RNH}_{2}, \mathrm{R}_{2} \mathrm{NH}, \mathrm{RSH}, \mathrm{RCOOH}$, RCONH_{2}, and RCONHR.
[2] Reaction with aldehydes and ketones to form $1^{\circ}, 2^{0}$, and 3° alcohols (20.10)

[3] Reaction with esters to form 3^{0} alcohols (20.13A)

[4] Reaction with acid chlorides (20.13)

- More reactive organometallic reagents- $\mathrm{R} " \mathrm{Li}$ and $\mathrm{R} " \mathrm{MgX}$-add two equivalents of $\mathrm{R} "$ to an acid chloride to form a 3° alcohol with two identical R" groups.
- Less reactive organometallic reagents$\mathrm{R}^{\prime}{ }_{2} \mathrm{CuLi}$-add only one equivalent of R^{\prime} to an acid chloride to form a ketone.

Chapter 20-4
[5] Reaction with carbon dioxide-Carboxylation (20.14A)

[6] Reaction with epoxides (20.14B)

[7] Reaction with α, β-unsaturated aldehydes and ketones (20.15B)

- More reactive organometallic reagents$\mathrm{R}^{\prime} \mathrm{Li}$ and $\mathrm{R}^{\prime} \mathrm{MgX}$-react with α, β unsaturated carbonyls by 1,2-addition.
- Less reactive organometallic reagents$\mathrm{R}_{2}{ }_{2} \mathrm{CuLi}$ - react with α, β-unsaturated carbonyls by 1,4 -addition.

Protecting groups (20.12)

[1] Protecting an alcohol as a tert-butyldimethylsilyl ether

[2] Deprotecting a tert-butyldimethylsilyl ether to re-form an alcohol

Practice Test on Chapter Review

1. Which compounds undergo nucleophilic addition and which undergo substitution?
a.

b.

c.

d.

2. What product is formed when $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Li}$ reacts with each compound, followed by quenching with water and acid?
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
e. CO_{2}
b. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$
f. $\mathrm{CH}_{2}=\mathrm{CHCOCH}_{3}$
c. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}$
g. ethylene oxide
d. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}$
h. $\mathrm{CH}_{3} \mathrm{COOH}$
3. What product is formed when $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CHO}$ is treated with each reagent?
a. $\mathrm{NaBH}_{4}, \mathrm{CH}_{3} \mathrm{OH}$
c. $\mathrm{Ag}_{2} \mathrm{O}, \mathrm{NH}_{4} \mathrm{OH}$
b. PCC
d. $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O}$
4. What reagent is needed to convert $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{CHCOCl}$ into each compound?
a. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{CHCOCH}_{2} \mathrm{CH}_{3}$
b. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{CHCHO}$
c. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{CHC}(\mathrm{OH})\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}$
d. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{CHCH}_{2} \mathrm{OH}$
5. Draw the organic products formed in the following reactions.
a.

c.

b.

[3] $\mathrm{H}_{3} \mathrm{O}^{+}$
d.

6. What starting materials are needed to synthesize each compound using the indicated reagent or functional group?
a. Synthesize:

from an ester
c. Synthesize:

using a Grignard reagent
b. Synthesize:

using an organocuprate reagent

Answers to Practice Test

1. a. addition
4.a. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{CuLi}$
b. DIBAL-H
b. substitution
c. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgBr}$
c. substitution
d. LiAlH_{4}
d. addition
2.

a.

6.
a.

2. a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
b. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
c. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{COH}$
d. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{COH}$
e. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$
f. $\mathrm{CH}_{2}=\mathrm{CHC}(\mathrm{OH})\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
g. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OH}$
h. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
3. a. $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{OH}$
b. $\mathrm{OHC}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CHO}$
c. $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}_{2} \mathrm{H}$
d. $\mathrm{HO}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CO}_{2} \mathrm{H}$
b.

b.

$+()_{2} \mathrm{CuLi}$
c.

c.

$+\mathrm{CH}_{3} \mathrm{CHO}$

Answers to Problems
20.1
a.

b. The O is $s p^{2}$ hybridized.

Both lone pairs occupy $s p^{2}$ hybrid orbitals.
20.2 A carbonyl compound with a reasonable leaving group $\left(\mathrm{NR}_{2}\right.$ or OR bonded to the $\left.\mathrm{C}=\mathrm{O}\right)$ undergoes substitution reactions. Those without good leaving groups undergo addition.

20.3 Aldehydes are more reactive than ketones. In carbonyl compounds with leaving groups, the better the leaving group, the more reactive the carbonyl compound.
a.
 less hindered carbonyl more reactive
c.

better leaving group more reactive
b.
 less hindered carbonyl more reactive
d.

better leaving group more reactive
20.4 NaBH_{4} reduces aldehydes to 1° alcohols and ketones to 2° alcohols.

b.

20.5 1° Alcohols are prepared from aldehydes and 2° alcohols are from ketones.

20.6

3° Alcohols cannot be made by reduction of a carbonyl group, because they do not contain a H on the C with the OH .

1-methylcyclohexanol

Chapter 20-8
20.7
a.

d.

b.

e.

c.

20.8
a.

b.

c.

 - $\mathrm{OH}+$

20.9 The 2° alcohol comes from a carbonyl group. Since hydride was delivered from the back side, the (R)-CBS reagent must be used.

20.10

Part [1]: Nucleophilic substitution of H for Cl

Part [2]: Nucleophilic addition of H^{-}to form an alcohol

20.11 Acid chlorides and esters can be reduced to 1° alcohols. Keep the carbon skeleton the same in drawing an ester and acid chloride precursor.
a.

b.

c.

20.12

a.

c.

b.

d.

20.13

a.

c.

b.

20.14

a.

c.

b.

20.15

a.

b.

Chapter 20-10
c.

d.

20.16 Tollens reagent reacts only with aldehydes.
a.

20.17

c. $\mathrm{B} \xrightarrow{\mathrm{PCC}}$

a.

b.

e. B

20.18

a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}+2 \mathrm{Li} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Li}+\mathrm{LiBr}$
c. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}+2 \mathrm{Li} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Li}+\mathrm{LiBr}$
b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{Mg} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgBr}$
$2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Li}+\mathrm{CuI} \longrightarrow \mathrm{LiCu}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}+\mathrm{LiI}$

20.19

$\mathrm{HC} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{NaH} \longrightarrow \mathrm{Na}^{+} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{H}_{2} \longleftarrow$ hydrogen gas $\mathrm{HC} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{CH}_{3} \mathrm{MgBr} \longrightarrow \mathrm{BrMgC} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{CH}_{4} \longleftarrow$ methane gas

20.20

a. $\square \mathrm{Li}+\mathrm{H}_{2} \mathrm{O} \longrightarrow\langle\mathrm{LiOH}$

d. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}-\mathrm{Li}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}+\mathrm{LiOH}$
20.21 To draw the products, add the alkyl or phenyl group to the carbonyl carbon and protonate the oxygen.
a.

c.

b. $\mathrm{H}^{\mathrm{O}-\mathrm{C}}$

$\xrightarrow[\text { d. }]{\text { [2] } \mathrm{H}_{2} \mathrm{O}}$
20.22 Addition of RM always occurs from above and below the plane of the molecule.
a.

b.

$+$

20.23
a.

b.

c.

20.24

a.

Chapter 20-12
b.

c. Linalool is a $3^{\circ} \mathrm{ROH}$. Therefore, it has no H on the carbon with the OH group, and cannot be prepared by reduction of a carbonyl compound.

20.25

venlafaxine
20.26

$\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{4} \mathrm{NF}$

20.27
a.

b.

c.

20.28
a.

 $+$

b. $\quad\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{COH} \Longrightarrow \mathrm{CH}_{3} \mathrm{O}^{-\mathrm{Cl}}{ }_{-}^{\mathrm{O}} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{MgBr}$ (2 equiv)

20.29 The R group of the organocuprate has replaced the Cl on the acid chloride.
a.

c.

b.

20.30
a.

c.

b.

d. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2}-\stackrel{\mathrm{O}}{\mathrm{C}}{ }_{-} \mathrm{Cl} \xrightarrow[{\text { [2] } \mathrm{H}_{2} \mathrm{O}}]{[1] \mathrm{LiAlH}_{4}}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$

20.31

a.

or
 $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CuLi}$
b.

20.32

a.

b.

c.

Chapter 20-14
20.33

20.34 The characteristic reaction of α, β-unsaturated carbonyl compounds is nucleophilic addition. Grignard and organolithium reagents react by 1,2 -addition and organocuprate reagents react by 1,4 -addition.
a.

b.

20.35

a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow[\mathrm{PBr}_{3}]{\mathrm{HBr} \text { or }} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br} \xrightarrow{\mathrm{Mg}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgBr}$

b.

(from a.)
c.

(from a.)
d.

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow{\mathrm{PCC}} \mathrm{CH}_{3} \mathrm{CHO}$
 $\xrightarrow{\mathrm{PCC}}$

e.

(from d.) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{CH}_{2}=\mathrm{CH}_{2} \xrightarrow{\text { mCPBA }} \stackrel{\mathrm{O}}{\triangle}$
20.36

20.37

b.

Chapter 20-16
c.

20.38

b.

h.

c.

i.

d.

j.

e.

f.

k.

I.

20.39
a.
d. $\xrightarrow{\text { LiOH }}$
b.

e.

c.

20.40

a. $\mathrm{MgBr} \xrightarrow{\mathrm{CH}_{2}=\mathrm{O}} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \xrightarrow{\sim}$
b.

d.

e. $\sim \mathrm{MgBr} \xrightarrow{\mathrm{CH}_{3} \mathrm{COOH}}+\mathrm{CH}_{3} \mathrm{COO}^{-}$
c.

f . $\mathrm{MgBr} \xrightarrow{\mathrm{HC} \equiv \mathrm{CH}} \mathrm{HCEC}^{-}$
g.

i.

h.

20.41

a.

b.
 No reaction
c.

d.

20.42 Arrange the larger group $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\right]$ on the left side of the carbonyl.

20.43

Chapter 20-18
20.44
a.

b.

c.

d.

20.45

a. $\mathrm{CH}_{3} \mathrm{CH}_{2}-\stackrel{\mathrm{Cl}}{-\mathrm{C}} \mathrm{C}_{-} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \xrightarrow[{\text { [2] } \mathrm{H}_{2} \mathrm{O}}]{[1] \mathrm{LiAlH}_{4}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
b.

c.

20.46

a.

b.

d.

20.47

c.

b.

d.

e.

g.

f.

h.

b.

c.

d.

[3] $\mathrm{H}_{3} \mathrm{O}^{+}$
e.

f.

20.49 Three carbons bear a δ^{+}because they are bonded to electronegative O atoms.

C 1 is an $s p^{3}$ hybridized C bonded to an O so it bears a δ^{+}. There are no additional resonance structures that affect $\mathrm{C} 1 . \mathrm{C} 2$ is part of a carbonyl that has three resonance structures, only one of which places a $(+)$ charge on C . The O atom of the ester donates its electron pair, making the carbonyl C less electrophilic than C3. C3 is most electrophilic. Its carbonyl is stabilized by two resonance structures, one of which places a $(+)$ charge on carbon.

20.50 The organolithium reagent is a nucleophile and a base. As a base it can remove the most acidic proton (between the benzene ring and $\mathrm{C}=\mathrm{O}$) to form an enolate that is protonated by $\mathrm{D}_{3} \mathrm{O}^{+}$.

20.51 Both ketones are chiral molecules with carbonyl groups that have one side more sterically hindered than the other. In both reductions, hydride approaches from the less hindered side.

2 H's
less hindered
Attack comes from
Attack comes from above

The CH_{3} groups on the bridgehead carbon make the top more hindered. H^{-}attacks from below to afford an exo OH group.

Attack comes from below.

The concave shape of the six-membered ring makes the bottom face of the $\mathrm{C}=\mathrm{O}$ more sterically hindered. Addition of the H^{-}occurs from above to place the new $\mathrm{C}-\mathrm{H}$ bond exo, making the OH endo.
20.52 Since a Grignard reagent contains a carbon atom with a partial negative charge, it acts as a base and reacts with the OH of the starting halide, $\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$. This acid-base reaction destroys the Grignard reagent so that addition cannot occur. To get around this problem, the OH group can be protected as a tert-butyldimethylsilyl ether, from which a Grignard reagent can be made.

INSTEAD: Use a protecting group.

20.53 Compounds \mathbf{F}, \mathbf{G}, and \mathbf{K} are all alcohols with aromatic rings so there will be many similarities in their proton NMR spectra. These compounds will, however, show differences in absorptions due to the CH protons on the carbon bearing the OH group. \mathbf{F} has a $\mathrm{CH}_{2} \mathrm{OH}$ group, which will give a singlet in the $3-4 \mathrm{ppm}$ region of the spectrum. \mathbf{G} is a 3° alcohol that has no protons on the C bonded to the OH group so it will have no peak in the $3-4 \mathrm{ppm}$ region of the spectrum. \mathbf{K} is a 2° alcohol that will give a doublet in the $3-4 \mathrm{ppm}$ region of the spectrum for the CH proton on the carbon with the OH group.

Chapter 20-22

20.54

20.55
a.

20.56

20.57

Chapter 20-24

20.58

d.

e.

20.59

20.60

20.61

a.

or

c.

b.

(three ways)

20.62

a.
b.

c.

$+\sim \mathrm{MgBr}$
20.63

20.64

Chapter 20-26

20.65

a.

b.

(from a.)
c.

d.

e.

(from c.)

 major product

f.

g.

h.

 $\xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4}}$
 major product
20.66
a.

b.

(from a.)
c.

d.

e.
 (from a.)
$[1] \mathrm{O}=\square$
[2] $\mathrm{H}_{2} \mathrm{O}$

20.67

20.68

a.

Chapter 20-28
b.

(from a.)
20.69
a.

b.

(from a.)
c. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow{\mathrm{PBr}_{3}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br} \xrightarrow{\mathrm{Mg}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{MgBr}$

d. $\sim \mathrm{OH} \xrightarrow{\mathrm{PCC}}$

20.70
a.

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow{\mathrm{PBr}_{3}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br} \xrightarrow{\mathrm{Mg}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgBr}
$$

b.

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow{\mathrm{PBr}_{3}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br} \xrightarrow{\mathrm{Mg}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{MgBr}
$$

c.

d.

 (from c.)

e. $\chi_{\mathrm{OH}} \xrightarrow{\mathrm{HBr}} X_{\mathrm{Br}} \xrightarrow{\mathrm{Mg}} X_{\mathrm{MgBr}}{ }_{\mathrm{H}}^{2} \mathrm{O}$

20.71

a.

$\xrightarrow{\text { b. }} \xrightarrow{\mathrm{PCC}} \xrightarrow{[1] \mathbf{A}}$

A
c.

d.

Chapter 20-30

20.72

20.73

singlet $(6 \mathrm{H}) 1.3\left(\mathrm{H}_{\mathrm{a}}\right)$
singlet $(2 \mathrm{H}) 2.4\left(\mathrm{H}_{\mathrm{b}}\right)$

20.74

20.75 Molecular ion at $m / z=86: \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$ (possible molecular formula).

Determine the number of integration units per H : Total number of integration units: $25+17+24+17=83$ 83 units/10 H's = 8.3 units per H
Divide each integration value by 8.3 to determine the number of H 's per signal: 25 units/ $8.3=3 \mathrm{H}$'s 24 units/ $8.3=3 \mathrm{H}$'s

17 units/ $8.3=2 \mathrm{H}$'s

G

IR peak $1721 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$ ${ }^{1} \mathrm{H}$ NMR: 4 signals (ppm) triplet $(3 \mathrm{H}) 0.9\left(\mathrm{H}_{\mathrm{a}}\right)$ sextet (2 H) $1.6\left(\mathrm{H}_{\mathrm{b}}\right)$ singlet $(3 \mathrm{H}) 2.1\left(\mathrm{H}_{\mathrm{c}}\right)$ triplet $(2 \mathrm{H}) 2.4\left(\mathrm{H}_{\mathrm{d}}\right)$
20.76 Molecular ion at $m / z=86: \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$ (possible molecular formula).

20.77

Chapter 20-32
20.78

20.79

L-Selectride adds H^{-}to a $\mathrm{C}=\mathrm{O}$ group. There are two possible reduction products-cis and trans isomers but the cis isomer is favored. The key element is that the three sec-butyl groups make L-selectride a large, bulky reducing agent that attacks the carbonyl group from the less hindered direction.

When H^{-}adds from the equatorial direction, the product has an axial OH and a new equatorial H. Since the equatorial direction is less hindered, this mode of attack is favored with large bulky reducing agents like L-selectride. In this case, the product is cis.

The axial $\mathrm{H}^{\prime} \mathrm{s}$ hinder H^{-}attack from the axial direction. As a result, this mode of attack is more difficult with larger reducing agents. In this case the product is trans. This product is not formed to any appreciable extent.
20.80 The β carbon of an α, β-unsaturated carbonyl compound absorbs farther downfield in the ${ }^{13} \mathrm{C}$ NMR spectrum than the α carbon, because the β carbon is deshielded and bears a partial positive charge as a result of resonance. Since three resonance structures can be drawn for an α, β-unsaturated carbonyl compound, one of which places a positive charge on the β carbon, the decrease of electron density at this carbon deshields it, shifting the ${ }^{13} \mathrm{C}$ absorption downfield. This is not the case for the α carbon.

20.81

Chapter 20-34
20.82

20.83

20.84

Chapter 21 Aldehydes and Ketones-Nucleophilic Addition

Chapter Review

General facts

- Aldehydes and ketones contain a carbonyl group bonded to only H atoms or R groups. The carbonyl carbon is $s p^{2}$ hybridized and trigonal planar (21.1).
- Aldehydes are identified by the suffix -al, while ketones are identified by the suffix -one (21.2).
- Aldehydes and ketones are polar compounds that exhibit dipole-dipole interactions (21.3).

Summary of spectroscopic absorptions of RCHO and $\mathrm{R}_{\mathbf{2}} \mathrm{CO}$ (21.4)

IR absorptions	$\mathrm{C}=\mathrm{O}$	$\sim 1715 \mathrm{~cm}^{-1}$ for ketones - increasing frequency with decreasing ring size $\sim 1730 \mathrm{~cm}^{-1}$ for aldehydes - For both RCHO and $\mathrm{R}_{2} \mathrm{CO}$, the frequency decreases with conjugation.
	$\begin{aligned} & \mathrm{C}_{s p}{ }^{2}-\mathrm{H} \\ & \text { of } \mathrm{CHO} \end{aligned}$	$\sim 2700-2830 \mathrm{~cm}^{-1}$ (one or two peaks)
${ }^{1} \mathrm{H}$ NMR	CHO	9-10 ppm (highly deshielded proton)
absorptions	$\begin{aligned} & \mathrm{C}-\mathrm{H} \alpha \\ & \text { to } \mathrm{C}=\mathrm{O} \end{aligned}$	$2-2.5 \mathrm{ppm}$ (somewhat deshielded $\mathrm{C}_{\text {sp }}{ }^{3}-\mathrm{H}$)
${ }^{13}$ C NMR absorption	$\mathrm{C}=\mathrm{O}$	190-215 ppm

Nucleophilic addition reactions

[1] Addition of hydride (H^{-}) (21.8)

- The mechanism has two steps.
- $\mathrm{H}:^{-}$adds to the planar $\mathrm{C}=\mathrm{O}$ from both sides.
[2] Addition of organometallic reagents (R^{-}) (21.8)

- The mechanism has two steps.
- $\mathrm{R}:^{-}$adds to the planar $\mathrm{C}=\mathrm{O}$ from both sides.

[3] Addition of cyanide (${ }^{-} \mathrm{CN}$) (21.9)

- The mechanism has two steps.
- ${ }^{-} \mathrm{CN}$ adds to the planar $\mathrm{C}=\mathrm{O}$ from both sides.

[4] Wittig reaction (21.10)

- The reaction forms a new $\mathrm{C}-\mathrm{C} \sigma$ bond and a new $\mathrm{C}-\mathrm{C} \pi$ bond.
- $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}$ is formed as by-product.
[5] Addition of 1^{0} amines (21.11)

- The reaction is fastest at $\mathrm{pH} 4-5$.
- The intermediate carbinolamine is unstable, and loses $\mathrm{H}_{2} \mathrm{O}$ to form the $\mathrm{C}=\mathrm{N}$.

[6] Addition of 2^{0} amines (21.12)

- The reaction is fastest at $\mathrm{pH} 4-5$.
- The intermediate carbinolamine is unstable, and loses $\mathrm{H}_{2} \mathrm{O}$ to form the $\mathrm{C}=\mathrm{C}$.

[7] Addition of $\mathrm{H}_{2} \mathrm{O}$-Hydration (21.13)

- The reaction is reversible. Equilibrium favors the product only with less stable carbonyl compounds (e.g., $\mathrm{H}_{2} \mathrm{CO}$ and $\mathrm{Cl}_{3} \mathrm{CCHO}$).
- The reaction is catalyzed with either H^{+}or ${ }^{-} \mathrm{OH}$.
[8] Addition of alcohols (21.14)

Other reactions

[1] Synthesis of Wittig reagents (21.10A)
$\mathrm{RCH}_{2} \mathrm{X} \xrightarrow[{\text { [2] } \mathrm{Bu}-\mathrm{Li}}]{[1] \mathrm{Ph}_{3} \mathrm{P}:} \mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHR}$

- Step [1] is best with $\mathrm{CH}_{3} \mathrm{X}$ and $\mathrm{RCH}_{2} \mathrm{X}$ since the reaction follows an $\mathrm{S}_{\mathrm{N}} 2$ mechanism.
- A strong base is needed for proton removal in Step [2].

[2] Conversion of cyanohydrins to aldehydes and ketones (21.9)

- This reaction is the reverse of cyanohydrin formation.
[3] Hydrolysis of nitriles (21.9)

[4] Hydrolysis of imines and enamines (21.12)

[5] Hydrolysis of acetals (21.14)

- The reaction is acid catalyzed and is the reverse of acetal synthesis.
- A large excess of $\mathrm{H}_{2} \mathrm{O}$ drives the equilibrium to favor the products.

Practice Test on Chapter Review

1. Give the IUPAC name for the following compounds.
a.

b.

c.

2. (a) Considering compounds A-D, which compound forms the smallest amount of hydrate?
(b) Which compound forms the largest amount of hydrate?

A

B

C

D
3. (a) Considering compounds A-D, which compound absorbs at the lowest wavenumber in its IR spectrum? (b) Which compound absorbs at the highest wavenumber in its IR spectrum?

A

B

C

D
4. Fill in the lettered reagents $(\mathbf{A}-\mathbf{G})$ in the following reaction scheme.

5. Draw the organic products formed in the following reactions.
a.

d.

[3]

b.

e.

c.

f.

Answers to Practice Test

1.a. 5-
isopropyl-2,4-dimethylcyclohexanone b. 3,3-dimethyl-5-phenyl-2pentanone
c. 4-ethyl-2-methyl-cyclohexanecarbaldehyde
2. a. D
b. C
3. a. B
b. C
5.
a.

e.

b.

c.

f.

d

Answers to Problems

21.1 As the number of R groups bonded to the carbonyl C increases, reactivity towards nucleophilic attack decreases. Steric hindrance decreases reactivity as well.

Increasing reactivity
decreasing steric hindrance

Chapter 21-6
21.2 More stable aldehydes are less reactive towards nucleophilic attack.

21.3 - To name an aldehyde with a chain of atoms: [1] Find the longest chain with the CHO group and change the $-e$ ending to $-a l$. [2] Number the carbon chain to put the CHO at C 1 , but omit this number from the name. Apply all other nomenclature rules.

- To name an aldehyde with the CHO bonded to a ring: [1] Name the ring and add the suffix-carbaldehyde. [2] Number the ring to put the CHO group at C1, but omit this number from the name. Apply all other nomenclature rules.
a. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CHO}$

c.

4 C ring = cyclobutanecarbaldehyde

3,3-dichlorocyclobutanecarbaldehyde
5 C chain = pentanal

3,3,4,4-tetramethylpentanal

2,5,6-trimethyloctanal
21.4 Work backwards from the name to the structure, referring to the nomenclature rules in Answer 21.3.
a. 2-isobutyl-3-isopropylhexanal

b. trans-3-methylcyclopentanecarbaldehyde

c. 1-methylcyclopropanecarbaldehyde

3 carbon ring $D \mathrm{CH}_{3}^{\mathrm{CHO}}$
d. 3,6-diethyInonanal

21.5 - To name an acyclic ketone: [1] Find the longest chain with the carbonyl group and change the $-e$ ending to -one. [2] Number the carbon chain to give the carbonyl C the lower number. Apply all other nomenclature rules.

- To name a cyclic ketone: [1] Name the ring and change the -e ending to -one. [2] Number the C's to put the carbonyl C at C 1 and give the next substituent the lower number. Apply all other nomenclature rules.
a.

8 C chain = octanone

5 C ring $=$
cyclopentanone

5-ethyl-4-methyl-3-octanone

c. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOC}\left(\mathrm{CH}_{3}\right)_{3}$

5 C chain $=$ pentanone

2,2,4,4-tetramethyl-3-pentanone
21.6 Most common names are formed by naming both alkyl groups on the carbonyl C, arranging them alphabetically, and adding the word ketone.
a. sec-butyl ethyl ketone

f. 3-ethyl-5-hexenal

c. p-ethylacetophenone

21.7 Compounds with both a $\mathrm{C}-\mathrm{C}$ double bond and an aldehyde are named as enals.
a. (2Z)-3,7-dimethyl-2,6-octadienal

b. $(2 E, 6 Z)-2,6$-nonadienal

Chapter 21-8
21.8 Even though both compounds have polar $\mathrm{C}-\mathrm{O}$ bonds, the electron pairs around the $s p^{3}$ hybridized O atom of diethyl ether are more crowded and less able to interact with electron-deficient sites in other diethyl ether molecules. The O atom of the carbonyl group of 2-butanone extends out from the carbon chain, making it less crowded. The lone pairs of electrons on the O atom can more readily interact with the electron-deficient sites in the other molecules, resulting in stronger forces and a higher boiling point.

diethyl ether
21.9 For cyclic ketones, the carbonyl absorption shifts to higher wavenumber as the size of the ring decreases and the ring strain increases. Conjugation of the carbonyl group with a $\mathrm{C}=\mathrm{C}$ or a benzene ring shifts the absorption to lower wavenumber.
a.

or

conjugated $\mathrm{C}=\mathrm{O}$
higher wavenumber lower wavenumber
b.

or

21.10 The number of lines in their ${ }^{13} \mathrm{C}$ NMR spectra can distinguish the constitutional isomers.

2-pentanone
5 lines

3-pentanone
3 lines

3-methyl-2-butanone
4 lines
21.11
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{3} \xrightarrow[{\text { [1] DIBAL-H }}]{\text { [2] }} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$
c. $\mathrm{HC} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{3} \xrightarrow[{\text { [1] } \mathrm{R}_{2} \mathrm{BH}}]{\text { [2] } \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{HO}^{-}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$
b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow{\mathrm{PCC}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$
d. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \xrightarrow[{\text { [2] } \mathrm{Zn}, \mathrm{H}_{2} \mathrm{O}}]{[1] \mathrm{O}_{3}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$
21.12

b.

21.13

Cleave this $\mathrm{C}=\mathrm{C}$ with O_{3}.
21.14 Addition of hydride or $\mathrm{R}-\mathrm{M}$ occurs at a planar carbonyl C , so two different configurations at a new stereogenic center are possible.
a.

 new stereogenic center
Add
b.

21.15 Treatment of an aldehyde or ketone with $\mathrm{NaCN}, \mathrm{HCl}$ adds HCN across the double bond. Cyano groups are hydrolyzed by $\mathrm{H}_{3} \mathrm{O}^{+}$to replace the three $\mathrm{C}-\mathrm{N}$ bonds with three $\mathrm{C}-\mathrm{O}$ bonds.
a.

b.

$\xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}, \Delta}$

21.16

21.17
a.

b.

Chapter 21-10
21.18
a. $\mathrm{Ph}_{3} \mathrm{P}:+\mathrm{Br}-\mathrm{CH}_{2} \mathrm{CH}_{3} \longrightarrow \underset{\substack{ \\\mathrm{Br}^{-}}}{\stackrel{+}{\mathrm{P}}-\mathrm{CH}_{2} \mathrm{CH}_{3}} \xrightarrow{\mathrm{BuLi}} \mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCH}_{3}$
b. $\mathrm{Ph}_{3} \mathrm{P}:+\mathrm{Br}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \longrightarrow \mathrm{Ph}_{3} \mathrm{P}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \xrightarrow{\mathrm{BuLi}} \mathrm{Ph}_{3} \mathrm{P}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$ Br^{-}
c.

21.19

21.20

21.21 To draw the starting materials of the Wittig reactions, find the $\mathrm{C}=\mathrm{C}$ and cleave $i t$. Replace it with a $\mathrm{C}=\mathrm{O}$ in one half of the molecule and a $\mathrm{C}=\mathrm{PPh}_{3}$ in the other half. The preferred pathway uses a Wittig reagent derived from a less hindered alkyl halide.
a.

b.

c.

21.22
a. Two-step sequence:

b. Two-step sequence:

21.23 When a 1° amine reacts with an aldehyde or ketone, the $\mathrm{C}=\mathrm{O}$ is replaced by $\mathrm{C}=\mathrm{NR}$.
a.

b.

c.

21.24 Remember that the $\mathrm{C}=\mathrm{NR}$ is formed from a $\mathrm{C}=\mathrm{O}$ and an NH_{2} group of a 1° amine.
a. ${\underset{\sim}{C}}_{\mathrm{H}^{\prime}}^{\mathrm{CH}_{3}}=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \Longrightarrow \overbrace{\mathrm{H}^{\prime}}^{\mathrm{CH}}=\mathrm{O}+\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
b.

21.25

Chapter 21-12
21.26 - Imines are hydrolyzed to 1° amines and a carbonyl compound.

- Enamines are hydrolyzed to 2° amines and a carbonyl compound.
a.

b.

enamine

$+$

2° amine
c. $\underset{\substack{\text { enamine } \\\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}} \xrightarrow[\mathrm{H}^{+}]{\mathrm{H}_{2} \mathrm{O}}}{ }$

21.27 • A substituent that donates electron density to the carbonyl C stabilizes it, decreasing the percentage of hydrate at equilibrium.
- A substituent that withdraws electron density from the carbonyl C destabilizes it, increasing the percentage of hydrate at equilibrium.
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$ or

or
one R group on $\mathrm{C}=\mathrm{O}$
higher percentage of hydrate

2 R groups on $\mathrm{C}=\mathrm{O}$
b.

or
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
F atoms are electron withdrawing. higher percentage of hydrate
21.28

21.29 Treatment of an aldehyde or ketone with two equivalents of alcohol results in the formation of an acetal (a C bonded to two OR groups).
a.

b.
 $+\mathrm{HO} \longrightarrow \mathrm{OH}$ TsOH

21.30
a.

2 OR groups
on different C's
2 ethers
b.

2 OR groups on same C acetal
c.

2 OR groups on same C acetal
d.

1 OR group and 1 OH group on same C hemiacetal
21.31 The mechanism has two parts: [1] nucleophilic addition of ROH to form a hemiacetal; [2] conversion of the hemiacetal to an acetal.

21.32

21.33

21.34 Use an acetal protecting group to carry out the reaction.

Chapter 21-14

21.35

a.
 C1
b.

21.36

Ether \mathbf{O} atoms are indicated in bold.
21.37 The hemiacetal OH is replaced by an OR group to form an acetal.
a.

b.

21.38
a.

5 stereogenic centers (labeled with *)
d.

b.

c.

e.

21.39
a.

3,3-dimethylbutanal
 cis-5-isopropyl-2-
methylcyclohexanone
b. [1] $\mathbf{A} \xrightarrow[\mathrm{CH}_{3} \mathrm{OH}]{\mathrm{NaBH}_{4}}$

21.40 The least hindered carbonyl group is the most reactive.

least reactive

intermediate
reactivity

most reactive

Chapter 21-16
21.41
a.

b.

21.42 Use the rules from Answers 21.3 and 21.5 to name the aldehydes and ketones.
a.

$8 \mathrm{C}=$ octanone 8-phenyl-3-octanone
e.
 o-nitroacetophenone
b.

 cyclopentanecarbaldehyde
c.

6 C ring = cyclohexanone 5-ethyl-2-methylcyclohexanone
d.

f.

$6 \mathrm{C}=$ hexanal 3,4-diethylhexana
g.

 $\mathrm{C}=$ hexena 3,4-diethyl-2-methyl-3-hexenal
21.43
a. 2-methyl-3-phenylbutanal

c. 3,3-dimethylcyclohexanecarbaldehyde

d. α-methoxypropionaldehyde

e. 3-benzoylcyclopentanone

b. dipropyl ketone

f. 2-formylcyclopentanone

i. 2-sec-butyl-3-cyclopentenone

j. 5,6-dimethyl-1-cyclohexenecarbaldehyde

21.44

hexanal

2-ethylbutanal

(2S)-2,3-dimethylbutanal

2,2-dimethylbutanal

4-methylpentanal

(2R)-2-methylpentanal

3,3-dimethylbutanal

(2S)-2-methylpentanal

(3S)-3-methyIpentanal

(3R)-3-methylpentanal
21.45

a. $\xrightarrow{\mathrm{NaBH}_{4}, \mathrm{CH}_{3} \mathrm{OH}}$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
b. $\xrightarrow{\text { [1] } \mathrm{LiAlH}_{4} ;[2] \mathrm{H}_{2} \mathrm{O}}$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
C. [1] $\mathrm{CH}_{3} \mathrm{MgBr} ;[2] \mathrm{H}_{2} \mathrm{O}$
$\xrightarrow{\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3} \mathrm{C}}$
d.

e. $\xrightarrow{\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCH}_{3}}$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{3}$ (E and Z isomers)
g.
$\xrightarrow{\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{NH}, \text { mild acid }}$

(E and Z isomers)
h.
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ (excess), H^{+}

f. $\xrightarrow[\text { mild acid }]{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHNH}_{2}}$

i.

(E and Z isomers)

21.46

c.

b.

21.47

a. $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \Longrightarrow \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
c. $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCH}=\mathrm{CH}_{2} \Longrightarrow \mathrm{BrCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$
b. $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{C}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2} \Longrightarrow \mathrm{BrCH}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}$

Chapter 21-18

21.48

a.

b.

c.

d.

e.
 (E and Z isomers)
f. $\xrightarrow[\mathrm{C}_{6} \mathrm{H}_{5}^{\prime}]{\mathrm{CO}^{\prime}}{ }_{\mathrm{C}_{6} \mathrm{H}_{5}}^{\mathrm{CN}} \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}, \Delta} \xrightarrow[\mathrm{C}_{6} \mathrm{H}_{5}]{\mathrm{HO}} \underbrace{\mathrm{COOH}}_{\mathrm{C}_{6} \mathrm{H}_{5}}$
g.

h.

i.

j.

21.49
a.

b.

c.

$+\mathrm{HOCH}_{2} \mathrm{CH}_{3}$
21.50 Consider para product only, when an ortho, para mixture can result.

21.51
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO} \xrightarrow{\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}$
b.

c.

21.52

Chapter 21-20
21.53

b. Lines of cleavage are drawn in.

21.54 Use the rules from Answer 21.1.

Increasing reactivity decreasing steric hindrance
21.55 The less stable carbonyl compound forms the higher percentage of hydrate.

The aldehyde is destabilized since there is a δ^{+}on its adjacent carbon, which is part of a $\mathrm{C}=\mathrm{O}$. Thus, PhCOCHO has the higher concentration of hydrate.
21.56 Electron-donating groups decrease the amount of hydrate at equilibrium by stabilizing the carbonyl starting material. Electron-withdrawing groups increase the amount of hydrate at equilibrium by destabilizing the carbonyl starting material. Electron-donating groups make the IR absorption of the $\mathrm{C}=\mathrm{O}$ shift to lower wavenumber because they stabilize the chargeseparated resonance form, giving the $\mathrm{C}=\mathrm{O}$ more single bond character.

p-nitroacetophenone	p-methoxyacetophenone
a. $\quad \mathrm{NO}_{2}$ withdrawing group less stable	$\mathrm{CH}_{3} \mathrm{O}$ donating group more stable
b. higher percentage of hydrate	lower percentage of hydrate
c. higher wavenumber	lower wavenumber

21.57 Use the principles from Answer 21.21.
a.

2° alkyl halide precursor [$\left.\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{CHX}\right]$
b.

or

c.

d.

21.58

a.

c.

b.

d.

\qquad

Chapter 21-22
21.59
a. $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{2} \mathrm{OH} \xrightarrow{\mathrm{PCC}} \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CHO}$
b. $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{COCl} \xrightarrow[{\text { [2] } \mathrm{H}_{2} \mathrm{O}}]{[1] \mathrm{LiAIH}\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right]_{3}} \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CHO}$
c. $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{COOCH}_{3} \xrightarrow[{\text { [2] } \mathrm{H}_{2} \mathrm{O}}]{\text { [1] DIBAL-H }} \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CHO}$
d. $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{COOH} \xrightarrow[{[2] \mathrm{H}_{2} \mathrm{O}}]{[1] \mathrm{LiAlH}_{4}} \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{2} \mathrm{OH} \xrightarrow{\text { PCC }} \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CHO}$
e. $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{3} \xrightarrow{\mathrm{KMnO}_{4}} \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{COOH} \xrightarrow[{[2] \mathrm{H}_{2} \mathrm{O}}]{[1] \mathrm{LiAlH}_{4}} \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{2} \mathrm{OH} \xrightarrow{\text { PCC }} \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CHO}$
f. $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}=\mathrm{CH}_{2} \xrightarrow[{[2] \mathrm{Zn}, \mathrm{H}_{2} \mathrm{O}}]{[1] \mathrm{O}_{3}} \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CHO}$
g. $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \xrightarrow[\mathrm{H}^{+}]{\mathrm{H}_{2} \mathrm{O}} \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CHO}$
h. $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)_{2} \xrightarrow[\mathrm{H}^{+}]{\mathrm{H}_{2} \mathrm{O}} \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CHO}$
21.60
a.

c. $\mathrm{CH}_{3} \mathrm{COCl} \xrightarrow{\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{CuLi}}$

e. $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCH}_{3} \xrightarrow[\substack{\mathrm{H}_{2} \mathrm{SO}_{4} \\ \mathrm{HgSO}_{4}}]{\mathrm{H}_{2} \mathrm{O}}$
b.

d. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH} \xrightarrow[\substack{\mathrm{H}_{2} \mathrm{SO}_{4} \\ \mathrm{HgSO}_{4}}]{\mathrm{H}_{2} \mathrm{O}}$
21.61
a. One-step sequence:

or
Two-step sequence:

b. One-step sequence:

or

21.62

a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{3}$

One possibility:

b.

c.

21.63

a.

b.

c.

(from a.)

d.

Chapter 21-24
21.64

a.

 (E and Z isomers)
b.

21.65

a.

b.

(E / Z mixture)
21.66
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow{\mathrm{PCC}} \mathrm{CH}_{3}{ }^{-\mathrm{O}}{ }_{-}^{\mathrm{O}} \mathrm{H}$

b.

21.67

21.68

21.69
a.

b.

Chapter 21-26
c.

21.70

21.71

21.72 The OH groups react with the $\mathrm{C}=\mathrm{O}$ in an intramolecular reaction, first to form a hemiacetal, and then to form an acetal.

21.73

a.

Chapter 21-28
b.

21.74

21.75

21.76

21.77

21.78 Hemiacetal \mathbf{A} is in equilibrium with its acyclic hydroxy aldehyde. The aldehyde can undergo hydride reduction to form 1,4-butanediol and a Wittig reaction to form an alkene.
a.

b.

Chapter 21-30
c.

New $C=C$ could be cis or trans. The more stable trans $\mathrm{C}=\mathrm{C}$ is drawn. isotretinoin
21.79

21.80

These three resonance structures include an aromatic ring; $4 n+2=2 \pi$ electrons. Although they are charge separated, the stabilized aromatic ring makes these three structures contribute to the
hybrid more than usual. Since these three resonance contributors have a $\mathrm{C}-\mathrm{O}$ single bond, the absorption is shifted to a lower wavenumber.

There are three resonance structures for 2-cyclohexenone, but the charge-separated resonance structures are not aromatic so they contribute less to the resonance hybrid. The $\mathrm{C}=\mathrm{O}$ absorbs in the usual region for a conjugated carbonyl.

21.81

C. Molecular formula $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O} \longrightarrow 5$ degrees of unsaturation (4 due to a benzene ring)

IR absorption at $1686 \mathrm{~cm}^{-1} \longrightarrow \mathrm{C}=\mathrm{O}$
NMR data: triplet at $1.21(3 \mathrm{H}) \longrightarrow \mathrm{CH}_{3}$ adjacent to $2 \mathrm{H}^{\prime} \mathrm{s}$
$\longrightarrow \mathrm{CH}_{3}$
quartet at $2.95(2 \mathrm{H}) \quad \longrightarrow \mathrm{CH}_{2}$ adjacent to 3 H 's
doublet at $7.24(2 \mathrm{H}) \quad \longrightarrow 2 \mathrm{H}^{\prime}$ s on benzene ring
doublet at $7.85(2 \mathrm{H}) \mathrm{ppm} \longrightarrow 2 \mathrm{H}$'s on benzene ring

D. Molecular formula $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O} \longrightarrow 5$ degrees of unsaturation (4 due to a benzene ring) IR absorption at $1719 \mathrm{~cm}^{-1}$ NMR data: triplet at $1.02(3 \mathrm{H})$ quartet at $2.45(2 \mathrm{H})$ singlet at $3.67(2 \mathrm{H})$
multiplet at $7.06-7.48(5 \mathrm{H}) \mathrm{ppm} \longrightarrow$ a monosubstituted benzene ring
21.82
$\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{O}_{2}$: 0 degrees of unsaturation
IR: $3000 \mathrm{~cm}^{-1}$: C-H bonds
NMR data (ppm):
H_{a} : quartet at $3.5(4 \mathrm{H})$, split by 3 H 's
H_{b} : singlet at $1.4(\mathbf{6 ~ H})$
H_{c} : triplet at $1.2(6 \mathrm{H})$, split by $2 \mathrm{H} ' \mathrm{~s}$

Chapter 21-32

21.83

A. Molecular formula $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}$

5 degrees of unsaturation
IR absorption at $1700 \mathrm{~cm}^{-1} \rightarrow \mathrm{C}=\mathrm{O}$
IR absorption at $\sim 2700 \mathrm{~cm}^{-1} \rightarrow \mathrm{CH}$ of RCHO NMR data (ppm):
triplet at 1.2 (2 H's adjacent) quartet at 2.7 (3 H's adjacent) doublet at 7.3 (2 H 's on benzene) doublet at 7.7 (2 H 's on benzene) singlet at 9.9 (CHO)

B. Molecular formula $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}$ 5 degrees of unsaturation IR absorption at $1720 \mathrm{~cm}^{-1} \rightarrow \mathrm{C}=\mathrm{O}$
IR absorption at $\sim 2700 \mathrm{~cm}^{-1} \rightarrow \mathrm{CH}$ of RCHO NMR data (ppm):

2 triplets at 2.85 and 2.95 (suggests $-\mathrm{CH}_{2} \mathrm{CH}_{2}$-) multiplet at 7.2 (benzene H's) signal at 9.8 (CHO)

21.84

C. Molecular formula $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{3}$

1 degree of unsaturation
IR absorption at $1718 \mathrm{~cm}^{-1} \rightarrow \mathrm{C}=\mathrm{O}$
To determine the number of H 's that give rise to each signal, first find the number of integration units per H by dividing the total number of integration units $(7+40+14+21=82)$ by the number of H 's $(12) ; 82 / 12=6.8$. Then divide each integration unit by this number (6.8). NMR data (ppm):
singlet at 2.2 (3 H 's)

doublet at 2.7 (2 H 's)
singlet at 3.2 (6 H 's $-2 \mathrm{OCH}_{3}$ groups)
triplet at $4.8(1 \mathrm{H})$

21.85

D. Molecular ion at $m / z=150: \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}$ (possible molecular formula)

5 degrees of unsaturation
IR absorption at $1692 \mathrm{~cm}^{-1} \rightarrow \mathrm{C}=\mathrm{O}$
NMR data (ppm):

triplet at $1.5\left(3 \mathrm{H} \mathrm{s}-\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$
quartet at $4.1\left(2 \mathrm{H}^{\prime} \mathrm{s}-\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$
doublet at 7.0 (2 H 's - on benzene ring)
doublet at 7.8 (2 H 's - on benzene ring)
singlet at 9.9 ($1 \mathrm{H}-$ on aldehyde)

21.86

a.

b.

21.87

The carbocation is trigonal planar, so $\mathrm{CH}_{3} \mathrm{OH}$ attacks from two different directions, and two different acetals are formed.

21.88

21.89

a.

brevicomin

Chapter 21-34

21.90

a.

c.

b. $\xrightarrow{[1] \mathrm{H}_{3} \mathrm{O}^{+}} \mathrm{HO} \xrightarrow[\mathrm{HO}]{\text { (OH}}$ $\mathrm{HO}^{2} \mathrm{OH} \longleftarrow(\mathrm{OH}$ can be up or down. $)$

21.91

21.92 The mechanism involves $\mathrm{S}_{\mathrm{N}} 2$ displacement of Br , followed by intramolecular enamine formation.

Chapter 22 Carboxylic Acids and Their Derivatives-Nucleophilic Acyl Substitution

Chapter Review

Summary of spectroscopic absorptions of RCOZ (22.5)
IR absorptions

- All RCOZ compounds have a $\mathrm{C}=\mathrm{O}$ absorption in the region $1600-1850 \mathrm{~cm}^{-1}$.
- RCOCl: $1800 \mathrm{~cm}^{-1}$
- (RCO$)_{2} \mathrm{O}: 1820$ and $1760 \mathrm{~cm}^{-1}$ (two peaks)
- RCOOR': 1735-1745 cm^{-1}
- RCONR'2: 1630-1680 cm^{-1}
- Additional amide absorptions occur at $3200-3400 \mathrm{~cm}^{-1}$ (N-H stretch) and $1640 \mathrm{~cm}^{-1}$ (N-H bending).
- Decreasing the ring size of a cyclic lactone, lactam, or anhydride increases the frequency of the $\mathrm{C}=\mathrm{O}$ absorption.
- Conjugation shifts the $\mathrm{C}=\mathrm{O}$ to lower wavenumber.
${ }^{1} \mathbf{H}$ NMR absorptions - $\mathrm{C}-\mathrm{H} \alpha$ to the $\mathrm{C}=\mathrm{O}$ absorbs at $2-2.5 \mathrm{ppm}$.
- $\mathrm{N}-\mathrm{H}$ of an amide absorbs at $7.5-8.5 \mathrm{ppm}$.
${ }^{13}$ C NMR absorption - $\mathrm{C}=\mathrm{O}$ absorbs at $160-180 \mathrm{ppm}$.

Summary of spectroscopic absorptions of RCN (22.5)

IR absorption
${ }^{13}$ C NMR absorption

- $\mathrm{C} \equiv \mathrm{N}$ absorption at $2250 \mathrm{~cm}^{-1}$
- $\mathrm{C} \equiv \mathrm{N}$ absorbs at $115-120 \mathrm{ppm}$.

Summary: The relationship between the basicity of \mathbf{Z}^{-}and the properties of RCOZ

- Increasing basicity of the leaving group (22.2)
- Increasing resonance stabilization (22.2)

- Increasing leaving group ability (22.7B)
- Increasing reactivity (22.7B)
- Increasing frequency of the $\mathbf{C = O}$ absorption in the IR (22.5)

General features of nucleophilic acyl substitution

- The characteristic reaction of compounds having the general structure RCOZ is nucleophilic acyl substitution (22.1).
- The mechanism consists of two steps (22.7A):
[1] Addition of a nucleophile to form a tetrahedral intermediate
[2] Elimination of a leaving group
- More reactive acyl compounds can be used to prepare less reactive acyl compounds. The reverse is not necessarily true (22.7B).

Chapter 22-2

Nucleophilic acyl substitution reactions
[1] Reaction that synthesizes acid chlorides (RCOCl)
From RCOOH (22.10A):

$$
\mathrm{R}^{-\stackrel{\mathrm{O}}{\mathrm{C}}}{ }^{\mathrm{OH}}+\mathrm{SOCl}_{2} \longrightarrow \stackrel{\mathrm{O}}{\mathrm{II}}_{\mathrm{R}^{-}}^{\mathrm{C}} \mathrm{Cl}^{\left(\mathrm{SO}_{2}\right.}+\mathrm{HCl}
$$

[2] Reactions that synthesize anhydrides [(RCO$\left.)_{2} \mathrm{O}\right]$
[a] From RCOCl (22.8):

[b] From dicarboxylic acids (22.10B):

[3] Reactions that synthesize carboxylic acids (RCOOH)
[a] From RCOCl (22.8):

[b] From (RCO) $\mathbf{2}_{2} \mathrm{O}$ (22.9):

[c] From RCOOR' (22.11):
[d] From RCONR' ${ }^{(} \mathrm{R}^{\prime}=$ H or alkyl, 22.13):

[4] Reactions that synthesize esters (RCOOR')
[a] From RCOCl (22.8):

[b] From (RCO) $\mathbf{2}_{2} \mathrm{O}$
(22.9):

[c] From RCOOH (22.10C):

[5] Reactions that synthesize amides $\left(\mathbf{R C O N H}_{2}\right)$ [The reactions are written with NH_{3} as the nucleophile to form RCONH_{2}. Similar reactions occur with $\mathrm{R}^{\prime} \mathrm{NH}_{2}$ to form RCONHR', and with $\mathrm{R}_{2} \mathrm{NH}^{2}$ to form RCONR^{2}.]
[a] From RCOCl
(22.8):

[b] From (RCO) ${ }_{2} \mathrm{O}$ (22.9):

[c] From RCOOH (22.10D):

$$
\mathrm{R}^{-} \stackrel{\stackrel{\mathrm{O}}{\mathrm{C}}}{\substack{\mathrm{OH}}} \stackrel{[1] \mathrm{NH}_{3}}{[2] \Delta} \mathrm{R}^{-\stackrel{\mathrm{O}}{\mathrm{C}}{ }_{\sim}} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

[d] From RCOOR'
(22.11):

Nitrile synthesis (22.18)

Nitriles are prepared by $S_{\mathbf{N}} 2$ substitution using unhindered alkyl halides as starting materials.

$$
\begin{array}{r}
\mathrm{R}-\mathrm{X}+{ }^{-\mathrm{CN}} \xrightarrow[\mathrm{~S}_{\mathrm{N}}]{ } \mathrm{R}-\mathrm{C} \equiv \mathrm{~N}+\mathrm{X}^{-} . \\
\mathrm{R}=\mathrm{CH}_{3}, 1^{\circ}
\end{array}
$$

Reactions of nitriles

[1] Hydrolysis (22.18A)

$$
\mathrm{R}-\mathrm{C} \equiv \mathrm{~N} \quad \stackrel{\left.\mathrm{H}^{+} \text {or }-\mathrm{OH}\right)}{\mathrm{H}_{2} \mathrm{O}} \underset{\substack{\mathrm{R}^{-} \mathrm{C}_{-} \\ \text {(with acid) }}}{\mathrm{O}_{\mathrm{OH}}} \text { or } \underset{\text { (with base) }}{\mathrm{R}^{-\mathrm{C}_{-}} \mathrm{O}_{-}^{-}}
$$

Chapter 22-4

[2] Reduction (22.18B)

[3] Reaction with organometallic reagents (22.18C)

Practice Test on Chapter Review

1. Give the IUPAC name for each of the following compounds.
a.

b.

c.

2. (a) Which compound absorbs at the lowest wavenumber in the IR? (b) Which compound absorbs at the highest wavenumber?

A

B

C

D
3. a. Which of the following reaction conditions can be used to synthesize an ester?
4. $\mathrm{RCOCl}+\mathrm{R}^{\prime} \mathrm{OH}+$ pyridine
5. $\mathrm{RCOOH}+\mathrm{R}^{\prime} \mathrm{OH}+\mathrm{H}_{2} \mathrm{SO}_{4}$
6. $\mathrm{RCOOH}+\mathrm{R}^{\prime} \mathrm{OH}+\mathrm{NaOH}$
7. Both methods [1] and [2] can be used to synthesize an ester.
8. Methods [1], [2], and [3] can all be used to synthesize an ester.
b. Which of the following compounds is most reactive in nucleophilic acyl substitution?
9. $\mathrm{CH}_{3} \mathrm{COCl}$
10. $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$
11. $\mathrm{CH}_{3} \mathrm{CON}\left(\mathrm{CH}_{3}\right)_{2}$
12. $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$
13. $\mathrm{CH}_{3} \mathrm{COOH}$
14. What reagent is needed to convert $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{CHCOOH}$ into each compound?
a. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{CHCOO} \mathrm{Na}^{+}$
b. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{CHCOCl}$
c. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{CHCON}\left(\mathrm{CH}_{3}\right)_{2}$
d. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{CHCO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
e. $\left[\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{CHCO}\right]_{2} \mathrm{O}$
15. What reagent is needed to convert $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$ to each compound?
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
c. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COCH}_{2} \mathrm{CH}_{3}$
d. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$
16. Draw the organic products formed in the following reactions.
a.

[3] $\mathrm{H}_{2} \mathrm{O}$
d.

[Indicate stereochemistry.]
b.

e.

c.

f.

[3] $\mathrm{H}_{2} \mathrm{O}$

Answers to Practice Test

1. a. 5-ethyl-2-methylheptanenitrile
b. cyclohexyl 2methylbutanoate
c. N-cyclohexyl- N methylbenzamide
2. a. \mathbf{C}
b. A
3. a. 4
b. 1
4. a. NaOH
b. SOCl_{2}
c. $\mathrm{HN}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{DCC}$
d. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{H}_{2} \mathrm{SO}_{4}$
e. heat
5. a. $\mathrm{H}_{3} \mathrm{O}^{+}$
b. [1] $\mathrm{LiAlH}_{4} ;[2] \mathrm{H}_{2} \mathrm{O}$
c. [1] $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Li}$; [2] $\mathrm{H}_{2} \mathrm{O}$
d. [1] DIBAL-H; [2] $\mathrm{H}_{2} \mathrm{O}$
6.

a.

b.

c.

d.

e.

f.

Chapter 22-6

Answers to Problems

22.1 The number of $\mathrm{C}-\mathrm{N}$ bonds determines the classification as a $1^{\circ}, 2^{\circ}$, or 3° amide.

22.2 As the basicity of Z increases, the stability of RCOZ increases because of added resonance stabilization.

this structure contributes to the hybrid.
Br^{-}is less basic than ${ }^{-} \mathrm{OH}$, so RCOBr
is less stable than RCOOH .
22.3

22.4
a. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{CH}-\mathrm{COCl}$
b. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOCH}_{3}$

Carboxylic Acids and Their Derivatives—Nucleophilic Acyl Substitution 22-7
c.

e.
 benzoic propanoic anhydride acyl group = propanamide

f.

3-ethylhexanenitrile
22.5
a. 5-methylheptanoyl chloride

b. isopropyl propanoate

c. acetic formic anhydride

d. N-isobutyl $-N$-methylbutanamide

e. 3-methylpentanenitrile

f. o-cyanobenzoic acid

g. sec-butyl 2-methylhexanoate

h. N-ethylhexanamide

22.6 $\mathrm{CH}_{3} \mathrm{CONH}_{2}$ has two H's bonded to N that can hydrogen bond. $\mathrm{CH}_{3} \mathrm{CON}\left(\mathrm{CH}_{3}\right)_{2}$ does not have any H's capable of hydrogen bonding. This means $\mathrm{CH}_{3} \mathrm{CONH}_{2}$ has much stronger intermolecular forces, which leads to a higher boiling point.

22.7

a.

amide: $\mathrm{C}=\mathrm{O}$ at lower wavenumber
c.
 and
 2° amide: $1 \mathrm{~N}-\mathrm{H}$
absorption at
3200 $3200-3400 \mathrm{~cm}^{-1}$
b.
 and

smaller ring:
$\mathrm{C}=\mathrm{O}$ at a higher wavenumber
d.

anhydride:
and

$2 \mathrm{C}=0$ peaks

Chapter 22-8
22.8

Molecular formula $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}$
5 degrees of unsaturation
IR: $1743 \mathrm{~cm}^{-1}$ from ester $\mathrm{C}=\mathrm{O}$
$3091-2895 \mathrm{~cm}^{-1}$ from $s p^{2}$ and $s p^{3} \mathrm{C}-\mathrm{H}$
${ }^{1} \mathrm{H}$ NMR: $\mathrm{H}_{\mathrm{a}}=2.06 \mathrm{ppm}\left(\right.$ singlet, 3 H) $-\mathrm{CH}_{3}$
$\mathrm{H}_{\mathrm{b}}=5.08 \mathrm{ppm}($ singlet, 2 H$)-\mathrm{CH}_{2}$
$\mathrm{H}_{\mathrm{c}}=7.33 \mathrm{ppm}$ (broad singlet, 5 H)
 10 H's on the two aromatic rings
Molecular formula $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2}$ 9 degrees of unsaturation
IR: $1718 \mathrm{~cm}^{-1}$ from conjugated ester $\mathrm{C}=\mathrm{O}$ $3091-2953 \mathrm{~cm}^{-1}$ from $s p^{2}$ and $s p^{3} \mathrm{C}-\mathrm{H}$
${ }^{1} \mathrm{H}$ NMR: $\mathrm{H}_{\mathrm{a}}=5.35 \mathrm{ppm}$ (singlet, 2 H)
$\mathrm{H}_{\mathrm{b}}=7.26-8.15 \mathrm{ppm}$ (multiplets, 10 H)
22.9 More reactive acyl compounds can be converted to less reactive acyl compounds.
a. $\mathrm{CH}_{3} \mathrm{COCl} \longrightarrow \quad \mathrm{CH}_{3} \mathrm{COOH}$ more reactive YES less reactive
b. $\underset{\substack{\mathrm{CH}_{3} \mathrm{CONHCH}_{3} \\ \text { less reactive }}}{\mathrm{NO}} \quad \begin{array}{r}\mathrm{CH}_{3} \mathrm{COOCH}_{3} \\ \text { more reactive }\end{array}$
c. $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$ less reactive
$\xrightarrow{\mathrm{NO}} \mathrm{CH}_{3} \mathrm{COCl}$ more reactive
d. $\underset{\text { more reactive }}{\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}} \quad \overrightarrow{\text { YES }} \quad \begin{gathered}\mathrm{CH}_{3} \mathrm{CONH}_{2} \\ \text { less reactive }\end{gathered}$
22.10 The better the leaving group is, the more reactive the carboxylic acid derivative. The weakest base is the best leaving group.
a.

$-\mathrm{NH}_{2}$ strongest base least reactive

intermediate

$-\mathrm{NHCH}_{3}$ strongest base least reactive

intermediate

22.11

acetic anhydride

The Cl atoms are electron withdrawing, which makes the conjugate base (the leaving group, $\mathrm{CCl}_{3} \mathrm{COO}^{-}$) weaker and more stable.
22.12

22.13 The mechanism has three steps: [1] nucleophilic attack by O ; [2] proton transfer; [3] elimination of the Cl^{-}leaving group to form the product.

22.14

a.
$\xrightarrow{\mathrm{H}_{2} \mathrm{O}}$

b.

22.15 Reaction of a carboxylic acid with thionyl chloride converts it to an acid chloride.
a. $\mathrm{CH}_{3} \mathrm{CH}_{2}-\stackrel{{ }_{-}^{\mathrm{II}} \mathrm{C}}{-} \mathrm{OH} \xrightarrow{\mathrm{SOCl}_{2}} \mathrm{CH}_{3} \mathrm{CH}_{2}-{ }^{\text {II }}{ }_{-}^{\mathrm{O}} \mathrm{Cl}$
b.
 [1] SOCl_{2}

[2] $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{NH}$ (excess)

Chapter 22-10
22.16
a.

b.

c.

d.

22.17

22.18

22.19
a.

c.

$\stackrel{{ }_{\mathrm{Cl}}^{\mathrm{O}}}{\mathrm{O}} \xrightarrow[{[2]} \Delta]{[1] \mathrm{CH}_{3} \mathrm{NH}_{2}}$

22.20
a.

b.

22.21 Bonds broken during hydrolysis are indicated.

22.22

22.23

Chapter 22-12
22.24

22.25 Aspirin has an ester, a more reactive acyl group, whereas acetaminophen has an amide, a less reactive acyl group.
a. The ester makes aspirin more easily hydrolyzed with water from the air than acetaminophen. Therefore, Tylenol can be kept for many years, whereas aspirin decomposes.
b. Similarly, aspirin will be hydrolyzed and decompose in the aqueous medium of a liquid medication, but acetaminophen is stable due to the less reactive amide group, allowing it to remain unchanged while dissolved in $\mathrm{H}_{2} \mathrm{O}$.

acetylsalicylic acid

acetaminophen
22.26

22.27

22.28

In the polyester Kodel, most of the bonds in the polymer backbone are part of a ring, so there are fewer degrees of freedom. Fabrics made from Kodel are stiff and crease resistant, due to these less flexible polyester fibers.
22.29

PLA
polyl(lactic acid)
22.30 Acetyl CoA acetylates the NH_{2} group of glucosamine, since the NH_{2} group is the most nucleophilic site.

22.31
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Br}$
$\xrightarrow{\mathrm{NaCN}}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{CN}$
c.

b.

22.32
a.

c.

b.

Chapter 22-14
22.33
a. $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{Br} \xrightarrow[{\text { [2] } \mathrm{LiAlH}_{4}}]{[1] \mathrm{NaCN}} \mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{NH}_{2}$ [3] $\mathrm{H}_{2} \mathrm{O}$
b.

22.34
a.

b.

22.35
a.

c.

d.

22.36

22.37 The better the leaving group, the more reactive the acyl compound.

worst leaving group least reactive

intermediate reactivity

best leaving group most reactive
22.38
a.

A
isobutyl 2,2-dimethylpropanoate

B
2-ethylhexanenitrile
b.

A

A $\xrightarrow{[3] \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{MgBr}} \xrightarrow{\mathrm{H}_{2} \mathrm{O}}$

A

 $+$

B $\xrightarrow{[1] \mathrm{H}_{3} \mathrm{O}^{+}}$

B

B

B

22.39 Better leaving groups make acyl compounds more reactive. \mathbf{C} has an electron-withdrawing NO_{2} group, which stabilizes the negative charge of the leaving group, whereas \mathbf{D} has an electron-donating OCH_{3} group, which destabilizes the leaving group.

an electron-withdrawing substituent

an electron-donating substituent

Chapter 22-16
22.40
a. \prod_{0}^{Cl} 2,2-dimethylpropanoyl chloride
f.

b.

g.

c.

cyclohexanecarboxylic anhydride
d.

phenyl phenylacetate
h.
 cis-2-bromocyclohexanecarbonyl chloride
i.

N,N-diethylcyclohexanecarboxamide
e.

N-cyclohexylbenzamide

cyclopentyl cyclohexanecarboxylate
22.41
a. propanoic anhydride

b. α-chlorobutyryl chloride

c. cyclohexyl propanoate

d. cyclohexanecarboxamide

e. isopropyl formate

f. N -cyclopentylpentanamide

g. 4-methylheptanenitrile

h. vinyl acetate

i. benzoic propanoic anhydride

j. 3-methylhexanoyl chloride

k. octyl butanoate

I. N, N-dibenzylformamide

22.42 Rank the compounds using the rules from Answer 22.10.
a.

least reactive

b.

anhydride with electronwithdrawing F's most reactive

22.43

The leaving group is both resonance stabilized and aromatic (6π electrons), making it a much better leaving group than exists in a regular amide.

22.44

Reaction as an acid:

Reaction as a base:

22.45

Chapter 22-18
22.46

a. \qquad
b.

d.
$\xrightarrow{\mathrm{NaCl}}$ no reaction
e.

c.

f.

22.47

$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{COOH}$

a.
$\xrightarrow{\mathrm{NaHCO}_{3}}$

h. $\frac{\mathrm{CH}_{3} \mathrm{OH}}{-\mathrm{OH}}$

c. $\xrightarrow{\mathrm{SOCl}_{2}}$

i. $\xrightarrow[{[2] \mathrm{CH}_{3} \mathrm{COCl}}]{[1] \mathrm{NaOH}}$

$\xrightarrow{\mathrm{NaCl}}$ no reaction
j. $\xrightarrow[\text { DCC }]{\mathrm{CH}_{3} \mathrm{NH}_{2}}$

e. $\xrightarrow[\text { (1 equiv) }]{\mathrm{NH}_{3}}$

k.
 $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
f.

I.

22.48

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

a. SOCl_{2} \qquad no reaction
c.
$\xrightarrow{\mathrm{H}_{2} \mathrm{O},-\mathrm{OH}}$

d. \qquad

b.

e. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$

22.49

a.

b. $\xrightarrow{\mathrm{H}_{2} \mathrm{O},-\mathrm{OH}}$

22.50

22.51
a.

f.

$\xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}}$

b. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}+$

g. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br} \xrightarrow[{\text { [2] } \mathrm{H}_{2} \mathrm{O},-\mathrm{OH}}]{\text { [1] } \mathrm{NaCN}}$

h. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{COOH} \xrightarrow{[1] \mathrm{SOCl}_{2}} \underset{\substack{\text { [2] } \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2} \\ \text { [3] } \mathrm{LiAH}_{4} \\ \text { [4] } \mathrm{H}_{2} \mathrm{O}}}{\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}}$
d. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOH}+\xrightarrow[\substack{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHOH} \\ \mathrm{CH}_{3}}]{\stackrel{\mathrm{C}_{2} \mathrm{SO}_{4}}{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}^{-}} \stackrel{\stackrel{\mathrm{Cl}}{\mathrm{C}},}{\mathrm{O}} \mathrm{OCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}}$ i.
c. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CN} \xrightarrow[{\text { [2] } \mathrm{H}_{2} \mathrm{O}}]{[1] \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{MgBr}} \mathrm{C}_{6} \mathrm{H}_{5}^{-{ }^{-1}{ }_{-}^{\mathrm{O}} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}}$

e.

j. $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}+$

22.52 Both lactones and acetals are hydrolyzed with aqueous acid, but only lactones react with aqueous base.
a.

b.

Chapter 22-20
22.53

22.54

a.

c.

b.

d.

22.55 Hydrolyze the amide and ester bonds in both starting materials to draw the products.

22.56

22.57
a.

b.

Chapter 22-22

22.58

22.59

22.60

22.61

22.62

Chapter 22-24
22.63

22.64 The mechanism is composed of two parts: hydrolysis of the acetal and intramolecular Fischer esterification of the hydroxy carboxylic acid.

22.65

22.66 Fischer esterification is the treatment of a carboxylic acid with an alcohol in the presence of an acid catalyst to form an ester.
a. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \Longrightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOH}$ $+\mathrm{HOCH}_{2} \mathrm{CH}_{3}$
c.

b.

d.

22.67

a.

Chapter 22-26
b.

c.

(from b.)
d.

(from c.)
22.68

b.

c.

d.

22.69
a. $\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{NaCN} \longrightarrow \mathrm{CH}_{3}-\mathrm{CN} \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}} \mathrm{CH}_{3}-\mathrm{COOH}$

b.

c. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}+\mathrm{NaCN} \longrightarrow$ This method can't be used because an $\mathrm{S}_{\mathrm{N}} 2$ reaction can't be done on a $3^{\circ} \mathrm{C}$.
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{Cl}+\mathrm{Mg} \longrightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{MgCl} \xrightarrow[{[2] \mathrm{H}_{3} \mathrm{O}^{+}}]{[1] \mathrm{CO}_{2}}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{COOH}$
d. $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{NaCN} \longrightarrow \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{CN} \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}} \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{COOH}$

22.71

22.72
a.

b.

c.

Chapter 22-28
22.73
a.

b.

c.

d.

22.74
a.

 $\mathrm{CH}_{3} \mathrm{OH} \xrightarrow{\mathrm{SOCl}_{2}} \mathrm{CH}_{3} \mathrm{Cl}$
b.

methyl anthranilate
c.

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow[\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O}]{\mathrm{CrO}_{3}} \mathrm{CH}_{3} \mathrm{COOH}
$$

22.75

b. $\mathrm{CH}_{3}{ }^{13} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow[\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O}]{\mathrm{CrO}_{3}} \mathrm{CH}_{3} 3^{13} \mathrm{C}$
c. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br} \xrightarrow[+ \text { base }\left(\mathrm{H}^{18} \mathrm{O}^{-}\right)]{\mathrm{H}_{2}^{18} \mathrm{O}} \mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{18} \mathrm{OH} \xrightarrow{\mathrm{CH}_{3} \mathrm{COCl}} \mathrm{CH}_{3}^{-\mathrm{C}^{\text {C }}{ }^{18} \mathrm{O}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}}$

$\mathrm{H}_{2}{ }^{18} \mathrm{O}$

22.76

a. $\mathrm{HO} \longrightarrow \mathrm{OH}$ and

b.

and

Chapter 22-30
22.77
a.

b.

22.78
a. Docetaxel has fewer C's and one more OH group than taxol. This makes docetaxel more water soluble than taxol.
b.

c.

d.

22.79

d.

and
OH absorption at $3500-3200 \mathrm{~cm}^{-1}+\mathrm{C}=\mathrm{O}$

only $\mathrm{C}=\mathrm{O}$

22.80

a. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOCH}_{2} \mathrm{CH}_{3}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{3}$

Increasing wavenumber

22.81

a. $\quad \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2} \rightarrow$ one degree of unsaturation IR: $1738 \mathrm{~cm}^{-1} \rightarrow \mathrm{C}=\mathrm{O}$
NMR: 1.12 (triplet, 3 H), 1.23 (doublet, 6 H),
2.28 (quartet, 2 H), 5.00 (septet, 1 H) ppm

b. $\quad \mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}$

IR: $2250 \mathrm{~cm}^{-1} \rightarrow$ triple bond NMR: 1.08 (triplet, 3 H), 1.70 (multiplet, 2 H), 2.34 (triplet, 2 H) ppm

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{~N}
$$

C. $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}$

IR: 3328 (NH), 1639 (conjugated amide $\mathrm{C}=\mathrm{O}$) cm^{-1} NMR: 2.95 (singlet, 3 H), 6.95 (singlet, 1 H), 7.3-7.7 (multiplet, 5 H) ppm

d. $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{ClO} \rightarrow$ one degree of unsaturation

IR: $1802 \mathrm{~cm}^{-1} \rightarrow \mathrm{C}=\mathrm{O}$ (high wavenumber, RCOCl) NMR: 0.95 (triplet, 3 H), 1.07 (multiplet, 2 H), 2.90 (triplet, 2 H) ppm

Chapter 22-32
e. $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2} \rightarrow$ one degree of unsaturation

IR: $1750 \mathrm{~cm}^{-1} \rightarrow \mathrm{C}=\mathrm{O}$
NMR: 1.20 (doublet, 6 H), 2.00 (singlet, 3 H),
4.95 (septet, 1 H) ppm

f. $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \rightarrow$ five degrees of unsaturation IR: $1740 \mathrm{~cm}^{-1} \rightarrow \mathrm{C}=\mathrm{O}$
NMR: 1.2 (triplet, 3 H), 2.4 (quartet, 2 H), 5.1 (singlet, 2 H), 7.1-7.5 (multiplet, 5 H) ppm

g. $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{3} \rightarrow$ two degrees of unsaturation IR: $1810,1770 \mathrm{~cm}^{-1} \rightarrow 2$ absorptions due to $\mathrm{C}=\mathrm{O}$ (anhydride)
NMR: 1.25 (doublet, 12 H), 2.65 (septet, 2 H) ppm

22.82
A. Molecular formula $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \rightarrow$ five degrees of unsaturation

IR absorption at $1718 \mathrm{~cm}^{-1} \rightarrow \mathrm{C}=\mathrm{O}$
NMR data (ppm):
triplet at $1.4\left(\mathrm{CH}_{3}\right.$ adjacent to $\left.2 \mathrm{H}^{\prime} \mathrm{s}\right)$ singlet at $2.4\left(\mathrm{CH}_{3}\right)$

quartet at $4.4\left(\mathrm{CH}_{2}\right.$ adjacent to $\left.\mathrm{CH}_{3}\right)$
doublet at 7.2 (2 H's on benzene ring)
doublet at 7.9 (2 H 's on benzene ring)
B. IR absorption at $1740 \mathrm{~cm}^{-1} \rightarrow \mathrm{C}=\mathrm{O}$

NMR data (ppm):
singlet at $2.0\left(\mathrm{CH}_{3}\right)$
triplet at $2.9\left(\mathrm{CH}_{2}\right.$ adjacent to $\left.\mathrm{CH}_{2}\right)$
triplet at $4.4\left(\mathrm{CH}_{2}\right.$ adjacent to $\left.\mathrm{CH}_{2}\right)$

multiplet at 7.3 (5 H 's, monosubstituted benzene)
22.83

Molecular formula $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2} \rightarrow$ five degrees of unsaturation
IR absorptions at $3300(\mathrm{NH})$ and $1680\left(\mathrm{C}=\mathrm{O}\right.$, amide or conjugated) cm^{-1}
NMR data (ppm):
triplet at $1.4\left(\mathrm{CH}_{3}\right.$ adjacent to $\left.\mathrm{CH}_{2}\right)$
singlet at $2.2\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right)$
quartet at $3.9\left(\mathrm{CH}_{2}\right.$ adjacent to $\left.\mathrm{CH}_{3}\right)$
doublet at 6.8 (2 H 's on benzene ring)
singlet at $7.2(\mathrm{NH})$

doublet at 7.4 (2 H's on benzene ring)
22.84

Molecular formula $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2} \rightarrow$ five degrees of unsaturation IR absorption 1699 ($\mathrm{C}=\mathrm{O}$, amide or conjugated) cm^{-1} NMR data (ppm):
triplet at $1.3(3 \mathrm{H})\left(\mathrm{CH}_{3}\right.$ adjacent to $\left.\mathrm{CH}_{2}\right)$
singlet at $3.0(6 \mathrm{H})\left(2 \mathrm{CH}_{3}\right.$ groups on N$)$

C
quartet at $4.3(2 \mathrm{H})\left(\mathrm{CH}_{2}\right.$ adjacent to $\left.\mathrm{CH}_{3}\right)$
doublet at $6.6(2 \mathrm{H})(2 \mathrm{H}$'s on benzene ring)
doublet at $7.9(2 \mathrm{H})(2 \mathrm{H}$'s on benzene ring)
22.85
a. Molecular formula $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2} \rightarrow$ one degree of unsaturation

IR absorption at $1743 \mathrm{~cm}^{-1} \rightarrow \mathrm{C}=\mathrm{O}$
${ }^{1} \mathrm{H}$ NMR data (ppm):
triplet at $0.9(3 \mathrm{H})-\mathrm{CH}_{3}$ adjacent to CH_{2}
multiplet at $1.35(2 \mathrm{H})-\mathrm{CH}_{2}$

multiplet at $1.60(2 \mathrm{H})-\mathrm{CH}_{2}$
singlet at $2.1\left(3 \mathrm{H}-\right.$ from CH_{3} bonded to $\left.\mathrm{C}=\mathrm{O}\right)$
triplet at $4.1(2 \mathrm{H})-\mathrm{CH}_{2}$ adjacent to the electronegative O atom and another CH_{2}
b. Molecular formula $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2} \rightarrow$ one degree of unsaturation

IR absorption at $1746 \mathrm{~cm}^{-1} \rightarrow \mathrm{C}=\mathrm{O}$
${ }^{1} \mathrm{H}$ NMR data (ppm):
doublet at $0.9(6 \mathrm{H})-2 \mathrm{CH}_{3}$'s adjacent to CH
multiplet at $1.9(1 \mathrm{H})$

singlet at $2.1(3 \mathrm{H})-\mathrm{CH}_{3}$ bonded to $\mathrm{C}=\mathrm{O}$
doublet at $3.85(2 \mathrm{H})-\mathrm{CH}_{2}$ bonded to electronegative O and CH
22.86 The extent of resonance stabilization affects the position of the $\mathrm{C}=\mathrm{O}$ absorption in the IR of an amide.

22.87

This resonance structure makes a significant contribution to the resonance hybrid.

22.88

ethyl benzoate
Two OH groups are now equivalent and either can lose $\mathrm{H}_{2} \mathrm{O}$ to form labeled or unlabeled ethyl benzoate.

Unlabeled starting material was recovered.

Chapter 22-34

22.89

22.90 Both acetals are hydrolyzed by the usual mechanism for acetal hydrolysis (Steps [1-[6]), forming four new OH groups. Intramolecular esterification forms a lactone (Steps [10]-[15]), followed by conversion of a carbonyl tautomer to an enol (Steps [16]-[17]). Both acetals are hydrolyzed at once in the given mechanism.

Chapter 22-36
22.91

Chapter 23 Substitution Reactions of Carbonyl Compounds at the α Carbon

Chapter Review

Kinetic versus thermodynamic enolates (23.4)

Kinetic enolate

- The less substituted enolate
- Favored by strong base, polar aprotic solvent, low temperature:

LDA, THF, $-78^{\circ} \mathrm{C}$

thermodynamic enolate

Thermodynamic enolate

- The more substituted enolate
- Favored by strong base, protic solvent, higher temperature: $\mathrm{NaOCH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$, room temperature

Halogenation at the α carbon

[1] Halogenation in acid (23.7A)

- The reaction occurs via enol intermediates.
- Monosubstitution of X for H occurs on the α carbon.
[2] Halogenation in base (23.7B)

- The reaction occurs via enolate intermediates.
- Polysubstitution of X for H occurs on the α carbon.
[3] Halogenation of methyl ketones in base-The haloform reaction (23.7B)

$$
\mathrm{R}^{\substack{\mathrm{O} \\
\mathrm{C}_{-} \\
\mathrm{CH}_{3}}} \xrightarrow{\mathrm{X}_{2}=\mathrm{Cl}_{2}, \mathrm{Br}_{2}, \text { or } \mathrm{I}_{2}} \xrightarrow[\mathrm{X}_{2} \text { (excess) }]{\mathrm{R}^{-\mathrm{C}} \mathrm{O}^{-}}+\begin{gathered}
\mathrm{O} \\
\text { haloform }
\end{gathered} \mathrm{HCx}_{3}
$$

- The reaction occurs with methyl ketones and results in cleavage of a carbon-carbon σ bond.

Reactions of α-halo carbonyl compounds (23.7C)

[1] Elimination to form α, β-unsaturated carbonyl compounds

- Elimination of the elements of Br and H forms a new π bond, giving an α, β-unsaturated carbonyl compound.

[2] Nucleophilic substitution

- The reaction follows an $\mathrm{S}_{\mathrm{N}} 2$ mechanism, generating an α-substituted carbonyl compound.

Alkylation reactions at the α carbon
 [1] Direct alkylation at the α carbon (23.8)

- The reaction forms a new $\mathrm{C}-\mathrm{C}$ bond to the α carbon
- LDA is a common base used to form an intermediate enolate.
- The alkylation in Step [2] follows an $\mathrm{S}_{\mathrm{N}} 2$ mechanism.
[2] Malonic ester synthesis (23.9)

- The reaction is used to prepare carboxylic acids with one or two alkyl groups on the α carbon.
- The alkylation in Step [2] follows an $\mathrm{S}_{\mathrm{N}} 2$ mechanism.

[3] Acetoacetic ester synthesis (23.10)

- The reaction is used to prepare ketones with one or two alkyl groups on the α carbon.
- The alkylation in Step [2] follows an $\mathrm{S}_{\mathrm{N}} 2$ mechanism.

Practice Test on Chapter Review

1. a. Which of the following compounds can be prepared using either the acetoacetic ester or malonic ester syntheses?
2.

2.

3.

4. Both [1] and [2] can be prepared by one of these routes.
5. Compounds [1], [2], and [3] can all be prepared by these routes.
b. Which of the following compounds is not an enol form of dicarbonyl compound \mathbf{A} ?

A
1.

2.

3.

4.

5. Compounds [1]Ğ4] are all enols of A.
2. a. Which proton in compound \mathbf{A} has the lowest $\mathrm{p} K_{\mathrm{a}}$?
b. Which proton in compound \mathbf{A} has the highest $\mathrm{p} K_{\mathrm{a}}$?

c. What proton in compound \mathbf{B} is the least acidic?
d. What proton in compound \mathbf{B} is the most acidic?

3. What reagents are needed to convert 4-heptanone to each compound?
a. 3-bromo-4-heptanone
b. 3-methyl-4-heptanone
c. 3,5-dimethyl-4-heptanone
d. 2-hepten-4-one
e. 2-methyl-4-heptanone

Chapter 23-4
4. Draw the organic products formed in each of the following reactions.
a.

d.

b.
 [3] $\mathrm{H}_{3} \mathrm{O}^{+}, \Delta$
e.

c.

5. a. What starting materials are needed to synthesize carboxylic acid A by a malonic ester synthesis?

b. What starting materials are needed to synthesize ketone B by the acetoacetic ester synthesis?

Answers to Practice Test

1. a. 1
b. 4
2. a. H_{b}
b. H_{d}
c. H_{b}
d. H_{c}
3. a. $\mathrm{Br}_{2}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
b. [1] LDA; [2] $\mathrm{CH}_{3} \mathrm{I}$
c. []1 LDA; [2] $\mathrm{CH}_{3} \mathrm{I}$;
[3] LDA; [4] $\mathrm{CH}_{3} \mathrm{I}$
d. [1] $\mathrm{Br}_{2}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$;
[2] $\mathrm{Li}_{2} \mathrm{CO}_{3}, \mathrm{LiBr}$, DMF
e. [1] $\mathrm{Br}_{2}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$;
[2] $\mathrm{Li}_{2} \mathrm{CO}_{3}, \mathrm{LiBr}, \mathrm{DMF}$;
[3] $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CuLi}$; [4] $\mathrm{H}_{2} \mathrm{O}$
4.

a.

b.

c.

5.
d.

a.
 $\mathrm{CH}_{2}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}$
b.

Answers to Problems

23.1 - To convert a ketone to its enol tautomer, change the $\mathrm{C}=\mathrm{O}$ to $\mathrm{C}-\mathrm{OH}$, make a new double bond to an α carbon, and remove a proton at the other end of the $\mathrm{C}=\mathrm{C}$.

- To convert an enol to its keto form, find the $\mathrm{C}=\mathrm{C}$ bonded to the OH . Change the $\mathrm{C}-\mathrm{OH}$ to a $\mathrm{C}=\mathrm{O}$, add a proton to the other end of the $\mathrm{C}=\mathrm{C}$, and delete the double bond.
[In cases where E and Z isomers are possible, only one stereoisomer is drawn.]
a.

b.

d.

e.

c.

f.

$\left[\begin{array}{c}\text { Draw mono enol } \\ \text { tautomers only. }\end{array}\right]$

(Conjugated enols are preferred.)
23.2 The mechanism has two steps: protonation followed by deprotonation.

23.3

Chapter 23-6
23.4
a.

b.

c.

23.5 The indicated H's are α to a $\mathrm{C}=\mathrm{O}$ or $\mathrm{C} \equiv \mathrm{N}$ group, making them more acidic because their removal forms conjugate bases that are resonance stabilized.
a.

b.

c.

d.

23.6

no resonance stabilization least acidic

Two resonance structures stabilize the conjugate base. intermediate acidity

Three resonance structures stabilize the conjugate base. most acidic
23.7 In each of the reactions, the LDA pulls off the most acidic proton.
a.

c.

b.

d.

23.8

The CH_{2} between the two $\mathrm{C}=\mathrm{O}$'s contains acidic H's, so $\mathrm{CH}_{3} \mathrm{MgBr}$ reacts as a base to remove a proton. Thus, proton transfer (not nucleophilic addition) occurs.
23.9 In addition to being strong bases, organolithiums are good nucleophiles that can add to a carbonyl group instead of pulling off a proton to generate an enolate.
23.10 - LDA, THF forms the kinetic enolate by removing a proton from the less substituted C.

- Treatment with $\mathrm{NaOCH}_{3}, \mathrm{CH}_{3} \mathrm{OH}$ forms the thermodynamic enolate by removing a proton from the more substituted C .
a.

b.

c.

LDA, THF

c.

23.11
a. This acidic H is removed with base to form an achiral enolate.

(2R)-2-methylcyclohexanone
achiral

Protonation of the planar achiral enolate occurs with equal probability from two sides, so a racemic mixture is formed. The racemic mixture is optically inactive.
b.

(3R)-3-methylcyclohexanone

Chapter 23-8
23.12

c.

b.

23.13
a.

c.

23.14
a.

c.

b.

23.15 Bromination takes place on the α carbon to the carbonyl, followed by an $\mathrm{S}_{\mathrm{N}} 2$ reaction with the nitrogen nucleophile.

23.16

b.
d.

23.17
a.

b.

c.

23.18 Three steps are needed: [1] formation of an enolate; [2] alkylation; [3] hydrolysis of the ester.

23.19
a.

b.

c.

d.

Chapter 23-10
23.20

23.21 Decarboxylation occurs only when a carboxy group is bonded to the $\alpha \mathrm{C}$ of another carbonyl group.
a.

YES
b.

NO
c.

YES
d.

NO

23.22

23.23
a.

b.

23.24 Locate the $\alpha \mathrm{C}$ to the COOH group, and identify all of the alkyl groups bonded to it. These groups are from alkyl halides, and the remainder of the molecule is from diethyl malonate.
a. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\underset{\alpha}{\mathrm{C}} \mathrm{H}_{2} \mathrm{COOH}$

b.

c.

$$
\mathrm{CH}_{2}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2} \xrightarrow[{[2] \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}}]{\left[\begin{array}{ll}
{[1] \mathrm{NaOEt}} \\
{[2] \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}}
\end{array} \xrightarrow[\Delta]{[1] \mathrm{NaOEt}}\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{CHCOOH}\right)}
$$

23.25 The reaction works best when the alkyl halide is 1° or $\mathrm{CH}_{3} \mathrm{X}$, since this is an $\mathrm{S}_{\mathrm{N}} 2$ reaction.
a.

b.

c. $\quad \stackrel{\alpha}{\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{COOH}}$
This compound has $3 \mathrm{CH}_{3}$ groups on the α carbon to the COOH . The malonic ester synthesis can be used to prepare mono- and disubstituted carboxylic acids only: $\mathrm{RCH}_{2} \mathrm{COOH}$ and $\mathrm{R}_{2} \mathrm{CHCOOH}$, but not $\mathrm{R}_{3} \mathrm{CCOOH}$.

23.26

23.27 Locate the α C. All alkyl groups on the $\alpha \mathrm{C}$ come from alkyl halides, and the remainder of the molecule comes from ethyl acetoacetate.
a.

b.

c.

23.28

$+$

Chapter 23-12
23.29
a.

b.

23.30 Use the directions from Answer 23.1 to draw the enol tautomer(s). In cases where E and Z isomers can form, only one isomer is drawn.

b.

 (less stable)

23.31
a.

A

one axial and one equatorial group, less stable

This isomerization will occur since it makes a more stable compound.

B

Both groups are equatorial. more stable
23.32 Use the directions from Answer 23.1 to draw the enol tautomer(s). In cases where E and Z isomers can form, only one isomer is drawn.
a.

b.

c.

(mono enol form)

conjugated enol
d.

23.33

The ester $\mathrm{C}=\mathrm{O}$ is resonance stabilized, and is therefore less available for tautomerization. Since the carbonyl form of the ester group is stabilized by electron delocalization, less enol is present at equilibrium.
23.34
a.

c.

b.

d.

23.35
a.

H_{c} is bonded to an $s p^{2}$ hybridized $\mathrm{C}=$ least acidic.
b.

H_{a} is bonded to an $\alpha \mathrm{C}=$ intermediate acidity.
H_{b} is bonded to an $\alpha \mathrm{C}$, and is adjacent
to a benzene ring = most acidic.
H_{c} is bonded to an $\alpha \mathrm{C}=$ least acidic.
H_{a} is bonded to an $\alpha \mathrm{C}$, and is adjacent to a benzene ring = intermediate acidity.
H_{b} is bonded to an αC between two
$\mathrm{C}=\mathrm{O}$ groups $=$ most acidic.
c.

H_{b} is bonded to an $s p^{3}$ hybridized $\mathrm{C}=$ least acidic.
H_{c} is bonded to an $\alpha \mathrm{C}=$ intermediate acidity. H_{a} is bonded to $\mathrm{O}=$ most acidic.

23.36

a.

d.

b.

e.

c.

f.

23.37 Enol tautomers have OH groups that give a broad OH absorption at $3600-3200 \mathrm{~cm}^{-1}$, which could be detected readily in the IR.

Chapter 23-14
23.38

Removal of H_{b} gives three resonance structures. The negative
charge is on O in one resonance structure, making the
conjugate base more stable and H_{b} more acidic (lower $\mathrm{p} \mathrm{K}_{\mathrm{a}}$).
23.39

5,5-Dimethyl-1,3-cyclohexanedione exists predominantly in its enol form because the $\mathrm{C}=\mathrm{C}$ of the enol is conjugated with the other $\mathrm{C}=\mathrm{O}$ of the dicarbonyl compound. Conjugation stabilizes this enol.
5,5-dimethyl-1,3cyclohexanedione

The enol of 2,2-dimethyl-1,3-cyclohexanedione is not conjugated with the other carbonyl group. In this way it resembles the enol of any other carbonyl compound, and thus it is present in low concentration.
2,2-dimethyl-1,3cyclohexanedione
23.40 a.

In the enol form, the bicyclic ring system has four π bonds (eight π electrons) and a lone pair on N, for a total of 10π electrons. This makes it aromatic by Hückel's rule.
b. The keto form of acyclovir can also be drawn in a resonance form that gives it 10π electrons, making it aromatic as well.

23.41

The O atom of the ester OR group donates electron density by a resonance effect. The resulting resonance structure keeps a negative charge on the less electronegative C end of the enolate. This destabilizes the resonance hybrid of the conjugate base, and makes the α H's of the ester less acidic.

This structure, which places a negative charge on the O atom, is the major contributor to the hybrid, stabilizing it, and making the $\alpha \mathrm{H}$'s of the ketone more acidic.
23.42

23.43 The mechanism of acid-catalyzed halogenation consists of two parts: tautomerization of the carbonyl compound to the enol form and reaction of the enol with halogen.

23.44 • The mechanism of acid-catalyzed halogenation [Part (a)] consists of two parts: tautomerization of the carbonyl compound to the enol form and reaction of the enol with halogen.

- In the haloform reaction [Part (b)], the three H 's of the CH_{3} group are successively replaced by X , to form an intermediate that is oxidatively cleaved with base.
a.

b.

23.45 Use the directions from Answer 23.24.
a. $\mathrm{CH}_{3} \mathrm{OCH}_{2}{\underset{\alpha}{\alpha}}_{\mathrm{CH}_{2} \mathrm{COOH}} \longrightarrow \mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{Br}$
b.

c.

23.46
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}{\underset{\sim}{C}}_{C}^{C}$

$$
\mathrm{CH}_{2}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2} \xrightarrow{[2] \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}} \xrightarrow[\Delta]{[1] \mathrm{NaOEt}} \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}^{2}
$$

c.

$$
\mid \mathrm{CH}_{2}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2} \xrightarrow{[2]\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}} \xrightarrow{[1] \mathrm{NH}_{3} \mathrm{Br}} \xrightarrow[\Delta]{[1] \mathrm{NaOEt}} \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}}
$$

23.48

a.

b.

c.

d.

23.49
a.

b. $\mathrm{CH}_{2}=\mathrm{O} \xrightarrow{[2] \mathrm{Ha}_{2} \mathrm{O}} \mathrm{CH}(\mathrm{COOEt})_{2} \longrightarrow \mathrm{HOCH}_{2} \mathrm{CH}(\mathrm{COOEt})_{2}$
d.
 $+\mathrm{CH}_{3} \mathrm{COOH}$
23.50 Use the directions from Answer 23.27.
a.

b.

Chapter 23-18
C.
d.

23.51
a.

b.

c.

d.

23.52
a.

f.

b.

g.

c. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et} \xrightarrow[{\text { [2] } \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}}]{\text { [1] LDA }} \xrightarrow[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHCO}_{2} \mathrm{Et}]{ }$
h.

d.

e.

j.

23.53

a.

b.

23.54
a.

ibuprofen
b.

Removal of the most acidic proton with LDA forms a carboxylate anion that reacts as a nucleophile with $\mathrm{CH}_{3} \mathrm{I}$ to form an ester as substitution product.

23.55

a.

 hybridized C reacts.
b.

A

Chapter 23-20
23.56

23.57
a.

In order for decarboxylation to occur readily, the COOH group must be bonded to the $\alpha \mathrm{C}$ of another carbonyl group. In this case, it is bonded to the β carbon.
b. $\mathrm{CH}_{2}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2} \xrightarrow[{[2]\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{CBr}}]{[1] \mathrm{NaOEt}}\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{CCH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}$

The 3° alkyl halide is too crowded to react with the strong nucleophile by an $\mathrm{S}_{\mathrm{N}} 2$ mechanism.
c.

 LDA removes a H from the less substituted C, forming the kinetic enolate. This product is from the thermodynamic enolate, which gives substitution on the more substituted α C.
23.58 Protonation in Step [3] can occur from below (to re-form the R isomer) or from above to form the S isomer as shown

23.59

23.60

23.61 Protons on the γ carbon of an α, β-unsaturated carbonyl compound are acidic because of resonance.

There is no H on this C , so a planar
enolate cannot form and this
stereogenic center cannot change.

Chapter 23-22
23.62

23.63

23.64 a. Since there are two C's bonded to the α carbon, there are two possible intramolecular alkylation reactions.

b.

23.65

a.

b.

c.

d.

23.66

a.

b.

c.

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$
d.
 (from a.)

Chapter 23-24
e.

f.

(from e.)
23.67

23.68

23.69
a.

b.

23.70

a.

b.

c.

[1] Li (2 equiv)
${ }^{\text {[2] CuI (0.5 equiv) }}$

[1] Li (2 equiv)
[2] CuI (0.5 equiv)

Chapter 23-26
23.71

To synthesize the desired product, a protecting group is needed:

23.72

23.73

$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O} \rightarrow$ one degree of unsaturation
IR peak at $1713 \mathrm{~cm}^{-1} \rightarrow \mathrm{C}=\mathrm{O}$
${ }^{1} \mathrm{H}$ NMR signals at (ppm)
H_{e} : triplet at $0.8(3 \mathrm{H})$
H_{a} : doublet at $0.9(6 \mathrm{H})$
H_{d} : sextet at $1.4(2 \mathrm{H})$
H_{c} : triplet at $1.9(2 \mathrm{H})$
H_{b} : septet at $2.1(1 \mathrm{H})$

23.74 Removal of H_{a} with base does not generate an anion that can delocalize onto the carbonyl O atom, whereas removal of H_{b} generates an enolate that is delocalized on O .

Chapter 23-28
23.75

23.76

23.77

23.78 a. In the presence of base an achiral enolate that can be protonated from both sides is formed.

b. The enolate \mathbf{A} formed from (-)-hyoscyamine is conjugated with the benzene ring, making it easier to form. The enolate \mathbf{B} formed from (- -littorine is not conjugated, so it is less readily formed.

(-)-littorine

B

Chapter 24 Carbonyl Condensation Reactions

Chapter Review

The four major carbonyl condensation reactions

| [1] Aldol reaction |
| :--- | :--- | :--- | :--- |
| (24.1) | Reaction type

Useful variations

[1] Directed aldol reaction (24.3)

β-hydroxy carbonyl compound

(E and Z)
α, β-unsaturated carbonyl compound

Chapter 24-2

[2] Intramolecular aldol reaction (24.4)

[a] With 1,4-dicarbonyl compounds:

[b] With 1,5-dicarbonyl compounds:

[3] Dieckmann reaction (24.7)

[a] With 1,6-diesters:

[b] With 1,7-diesters:

Practice Test on Chapter Review

1. a. Which compounds are possible Michael acceptors?
2.

2.

3.

4. Both compounds [1] and [2] are Michael acceptors.
5. Compounds [1], [2], and [3] are all Michael acceptors.
b. Which of the following compounds can be formed by an aldol reaction?

1.

2.

3.

4. Both [1] and [2] can be formed by aldol reaction.
5. Compounds [1], [2], and [3] can all be formed by aldol reaction.
c. Which compounds can be formed in a Robinson annulation?
1.

3.

2.

4. Compounds [1] and [2] can be formed by Robinson annulation.
5. Compounds [1], [2], and [3] can be formed by Robinson annulation.
d. What compounds can be used to form \mathbf{A} by a condensation reaction?

A
1.

and

3.

2.

4. Compounds [1] and [2] can be used to form \mathbf{A}.
5. Compounds [1], [2], and [3] can be used to form \mathbf{A}.
2. Give the reagents required for each step.

3. Draw the organic products formed in the following reactions.
a.
 $\xrightarrow[{\substack{\text { [2] } \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO} \\ \text { [3] } \mathrm{H}_{2} \mathrm{O}}}]{\text { [1] LDA }}$
c.

b.

d.

Chapter 24-4
4. a. What organic starting materials are needed to synthesize \mathbf{D} by a Robinson annulation reaction?

b. What organic starting materials are needed to synthesize β-keto ester \mathbf{B} by a Dieckmann reaction?

B
c. What starting materials are needed to synthesize \mathbf{A} by an aldol reaction?

Answers to Practice Test

1.a. 4
b. 2
c. 1
d. 4
2.a. [1] O_{3}; [2] $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}$
b. $\mathrm{CrO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O}$
c. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{H}_{2} \mathrm{SO}_{4}$
d. [1] NaOEt , EtOH ; [2] $\mathrm{H}_{3} \mathrm{O}^{+}$
e. [1] LDA; [2] $\mathrm{CH}_{3} \mathrm{I}$
3.
a.

b.

c.

d.

4.
a.

b.

c.

Chapter 24: Answers to Problems

24.1
a.

c.

b.

d.

24.2

a.

no $\alpha \mathrm{H}$ no aldol reaction
b.

yes
c.

d.

e.

yes
yes

24.3

a.

c.

b.

24.4

24.5 Locate the α and β C's to the carbonyl group, and break the molecule into two halves at this bond. The $\alpha \mathrm{C}$ and all of the atoms bonded to it belong to one carbonyl component. The $\beta \mathrm{C}$ and all of the atoms bonded to it belong to the other carbonyl component.
a.

c.

Chapter 24-6

24.6

24.7

24.8

b.

c.

(E and Z isomers)
4.9

a.

b.

c.

d.

24.10 Find the α and β C's to the carbonyl group and break the bond between them.
a.

b.

c.

24.11

24.12 All enolates have a second resonance structure with a negative charge on O.

24.13
a.

b.

24.14

A
$\xrightarrow[{\text { [2] }\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}}]{[1] \mathrm{O}_{3}}$

$\xrightarrow[\mathrm{H}_{2} \mathrm{O}]{ }$

B

Chapter 24-8
24.15 Join the $\alpha \mathrm{C}$ of one ester to the carbonyl C of the other ester to form the β-keto ester.
a.

b.

24.16 In a crossed Claisen reaction between an ester and a ketone, the enolate is formed from the ketone, and the product is a β-dicarbonyl compound.
a.

Only this compound can form an enolate.
b.

c.

24.17 A β-dicarbonyl compound like avobenzone is prepared by a crossed Claisen reaction between a ketone and an ester.

Break the molecule into two components at either dashed line. avobenzone

24.18
a.

b.

24.19

24.20

24.21 A Michael acceptor is an α, β-unsaturated carbonyl compound.
a.

α, β-unsaturated yes-Michael acceptor
b.

c.

d.
 not α, β-unsaturated not α, β-unsaturated

24.22

a.

b.

c.

Chapter 24-10

24.23

a.

b.

24.24 The Robinson annulation forms a six-membered ring and three new carbon-carbon bonds: two σ bonds and one π bond.
a.

b.

c.

d.

24.25
a.

c.
 $+\mathrm{N}_{0}$

a.

24.27

24.28 The product of an aldol reaction is a β-hydroxy carbonyl compound or an α, β-unsaturated carbonyl compound. The α, β-unsaturated carbonyl compound is drawn as product unless elimination of $\mathrm{H}_{2} \mathrm{O}$ cannot form a conjugated system.

c. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO} \xrightarrow[\mathrm{H}_{2} \mathrm{O}]{-\mathrm{OH}}$

(E and Z isomers)
b. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCHO}+\mathrm{CH}_{2}=\mathrm{O} \quad \stackrel{-\mathrm{OH}}{\mathrm{H}_{2} \mathrm{O}} \xrightarrow[\substack{\mathrm{C} \\ \mathrm{CH}_{3}-\mathrm{C}-\mathrm{CHO} \\ \mathrm{C}_{2} \\ \mathrm{CH}_{2} \mathrm{OH}}]{\substack{\mathrm{C}_{3} \\ \hline}}$
d.
$\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{C}=\mathrm{O}$ only

24.29

24.30

24.31

a.

c.

b. OHC

24.32 Locate the α and β C's to the carbonyl group, and break the molecule into two halves at this bond. The $\alpha \mathrm{C}$ and all of the atoms bonded to it belong to one carbonyl component. The $\beta \mathrm{C}$ and all the atoms bonded to it belong to the other carbonyl component.
a.

b.

c.

d.

e.

24.33

24.34 Base removes the most acidic proton between the two $\mathrm{C}=\mathrm{O}$'s in \mathbf{B}. This enolate reacts with the aldehyde in \mathbf{A} to form a product that loses $\mathrm{H}_{2} \mathrm{O}$.

24.35
a.

b.

c.

d.

24.36 Ozonolysis cleaves the $\mathrm{C}=\mathrm{C}$, and base catalyzes an intramolecular aldol reaction.

24.37 Aldol reactions proceed via resonance-stabilized enolates. \mathbf{K} can form an enolate that allows for delocalization of the negative charge on O . Delocalization is not possible in \mathbf{J}, because a double bond would be placed at a bridgehead carbon, which is geometrically impossible.

24.38

b. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et} \longrightarrow$

24.39

Chapter 24-14

24.40

a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{Et} \longrightarrow$

b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{O}$ \qquad
 $+\mathrm{HCO}_{2} \mathrm{Et}$

f.

24.41

a.

c.

b.

d. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}(\mathrm{COOEt})_{2} \longrightarrow$

24.42 Only esters with two H's or three H's on the α carbon form enolates that undergo Claisen reaction to form resonance-stabilized enolates of the product β-keto ester. Thus, the enolate forms on the $\mathrm{CH}_{2} \alpha$ to one ester carbonyl, and cyclization yields a five-membered ring.

24.43
a.

b.

24.44

a.

b.

c.

d.

24.45

a.

b.

$+\mathrm{H}_{2} \ddot{\mathrm{O}}$

Chapter 24-16

24.46

a.

b.

c.

d.

24.47

c.

b.

d.

24.48

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$

a.

b.

c.

$\xrightarrow[\mathrm{NaOEt}, \mathrm{EtOH}]{\mathrm{CH}_{2}\left(\mathrm{CO}_{2} \mathrm{Et}_{2}\right.}$

g. $\xrightarrow[\text { Pd-C }]{\mathrm{H}_{2}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
h. $\xrightarrow[\text { TsOH }]{\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}}$

i. $\xrightarrow[\text { mild acid }]{\mathrm{CH}_{3} \mathrm{NH}_{2}} \mathrm{CH}_{3}^{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}} \mathrm{~N}^{\mathrm{CH}_{3}}$
j. $\xrightarrow[\text { mild acid }]{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHN}\left(\mathrm{CH}_{3}\right)_{2}$
e. $\xrightarrow[{[2] \mathrm{H}_{2} \mathrm{O}}]{[1] \mathrm{CH}_{3} \mathrm{Li}}$
f.
$\xrightarrow[\mathrm{CH}_{3} \mathrm{OH}]{\mathrm{NaBH}_{4}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
k. $\xrightarrow[\mathrm{H}_{2} \mathrm{SO}_{4}]{\mathrm{CrO}_{3}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
I.

m. $\xrightarrow{\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }_{\mathrm{H}^{\prime}}^{\mathrm{C}=\mathrm{CH}_{2}}$
n. $\xrightarrow{\mathrm{NaCN}, \mathrm{HCl}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\underset{\substack{\mathrm{C} \\ \mathrm{C} \\ \mathrm{C} \\ \mathrm{CN}}}{\substack{\mathrm{O} \\ \hline}}$
o. [1] LDA; [2] $\mathrm{CH}_{3} \mathrm{I}$

24.49

a.

e.

[3] $\mathrm{H}_{2} \mathrm{O}$
b.

c. $\mathrm{NCCH}_{2} \mathrm{CO}_{2} \mathrm{Et} \xrightarrow[\square=\mathrm{O}]{\mathrm{NaOEt}, \mathrm{EtOH}} \longrightarrow \mathrm{CO}_{2} \mathrm{Et}$
f.

g.

d.

h.

24.50

Chapter 24-18
24.51

24.52

24.53 Enolate \mathbf{A} is more substituted (and more stable) than either of the other two possible enolates and attacks an aldehyde carbonyl group, which is sterically less hindered than a ketone carbonyl. The resulting ring size (five-membered) is also quite stable. That is why 1-acetylcyclopentene is the major product.

24.54

24.55 Removal of a proton from $\mathrm{CH}_{3} \mathrm{NO}_{2}$ forms an anion for which three resonance structures can be drawn.

Chapter 24-20
24.56 All enolates have a second resonance structure with a negative charge on O .

24.57 $\mathrm{Et}_{3} \mathrm{~N}$ reacts with phenylacetic acid to form a carboxylate anion that acts as a nucleophile to displace Br , forming \mathbf{Y}. Then an intramolecular crossed-Claisen reaction yields rofecoxib.

24.58 Polymerization occurs by repeated Michael reactions.

24.59

24.60
a.

Chapter 24-22
b. The protons on C 6 are more acidic than other $s p^{3}$ hybridized $\mathrm{C}-\mathrm{H}$ bonds because a highly resonance-stabilized carbanion is formed when a proton is removed. One resonance structure places a negative charge on the carbonyl O atom. This makes the protons on C6 similar in acidity to the α H's to a carbonyl.
c. This is a crossed Claisen because it involves the enolate of a conjugated ester reacting with the carbonyl group of a second ester.

24.61

a.

b.

c.

d.

 [3] $\mathrm{H}_{2} \mathrm{O},{ }^{-} \mathrm{OH}$

(E and Z isomers)
e.

24.62

a.

b.

24.63

a.

b.

c.

 [3] $\underbrace{\mathrm{H} \mathrm{O}} \stackrel{\mathrm{PCC}}{\mathrm{PCO}}$

d.

24.64

a.

b.

Chapter 24-24

24.65

24.66

a.

b.

24.67

c.

e.

 or

conjugated tautomers favored

24.68

a.

Chapter 24-26
b.

c.

d.

This reaction is an acid-catalyzed aldol that proceeds by way of enols not enolates. The β-hydroxy ketone initially formed cannot dehydrate to form an α, β-unsaturated carbonyl because there is no H on the α carbon. Thus, dehydration occurs, but the resulting $\mathrm{C}=\mathrm{C}$ is not conjugated with the $\mathrm{C}=\mathrm{O}$.
e.
 This H is now more acidic because it is located between two carbonyl groups. As a result, it is the most readily removed proton for the Michael reaction in the next step.
24.69

24.70 Rearrangement generates a highly resonance-stabilized enolate between two carbonyl groups.

Chapter 24-28
24.71 All enolates have a second resonance structure with a negative charge on O .

24.72 All enolates have a second resonance structure with a negative charge on O .

24.73

a.

 (+ other resonance structures) The negative charge is delocalized on the electronegative N atom. This factor is what makes the CH_{3} group bonded to the pyridine ring more

A
b. The condensation reaction can occur only if the CH_{3} group bonded to the pyridine ring has acidic hydrogens that can be removed with ${ }^{-} \mathrm{OH}$.

Chapter 24-30
24.74 Since the reaction takes place in acid, enols are involved. After the initial condensation reaction, the NH_{2} and $\mathrm{C}=\mathrm{O}$ groups form an imine by an intramolecular reaction.

Chapter 25 Amines

Chapter Review

General facts

- Amines are organic nitrogen compounds having the general structure $\mathrm{RNH}_{2}, \mathrm{R}_{2} \mathrm{NH}$, or $\mathrm{R}_{3} \mathrm{~N}$, with a lone pair of electrons on N (25.1).
- Amines are named using the suffix -amine (25.3).
- All amines have polar $\mathrm{C}-\mathrm{N}$ bonds. Primary $\left(1^{\circ}\right)$ and 2° amines have polar $\mathrm{N}-\mathrm{H}$ bonds and are capable of intermolecular hydrogen bonding (25.4).
- The lone pair on N makes amines strong organic bases and nucleophiles (25.8).

Summary of spectroscopic absorptions (25.5)		
Mass spectra		Molecular ion

Comparing the basicity of amines and other compounds (25.10)

- Alkylamines $\left(\mathrm{RNH}_{2}, \mathrm{R}_{2} \mathrm{NH}\right.$, and $\left.\mathrm{R}_{3} \mathrm{~N}\right)$ are more basic than NH_{3} because of the electron-donating R groups (25.10A).
- Alkylamines $\left(\mathrm{RNH}_{2}\right)$ are more basic than arylamines $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\right)$, which have a delocalized lone pair from the N atom (25.10B).
- Arylamines with electron-donor groups are more basic than arylamines with electronwithdrawing groups (25.10B).
- Alkylamines $\left(\mathrm{RNH}_{2}\right)$ are more basic than amides $\left(\mathrm{RCONH}_{2}\right)$, which have a delocalized lone pair from the N atom $(25.10 \mathrm{C})$.
- Aromatic heterocycles with a localized electron pair on N are more basic than those with a delocalized lone pair from the N atom (25.10D).
- Alkylamines with a lone pair in an $s p^{3}$ hybrid orbital are more basic than those with a lone pair in an $s p^{2}$ hybrid orbital (25.10E).

Preparation of amines (25.7)

[1] Direct nucleophilic substitution with $\mathbf{N H}_{3}$ and amines (25.7A)

$$
\begin{aligned}
& \mathrm{R}-\mathrm{X}+\underset{\text { excess }}{\underset{\mathrm{N}}{3} \mathrm{H}_{3}} \longrightarrow \underbrace{\mathrm{R}-\ddot{\mathrm{N}} \mathrm{H}_{2}}_{1^{\circ} \text { amine }}+\mathrm{NH}_{4}^{+} \mathrm{x}^{-}
\end{aligned}
$$

- The mechanism is $\mathrm{S}_{\mathrm{N}} 2$.
- The reaction works best for $\mathrm{CH}_{3} \mathrm{X}$ or $\mathrm{RCH}_{2} \mathrm{X}$.
- The reaction works best to prepare 1° amines and ammonium salts.

Chapter 25-2

[2] Gabriel synthesis (25.7A)

- The mechanism is $\mathrm{S}_{\mathrm{N}} 2$.
- The reaction works best for $\mathrm{CH}_{3} \mathrm{X}$ or $\mathrm{RCH}_{2} \mathrm{X}$.
- Only 1° amines can be prepared.

[3] Reduction methods (25.7B)

[b] From nitriles

[c] From amides

[4] Reductive amination (25.7C)

- Reductive amination adds one alkyl group (from an aldehyde or ketone) to a nitrogen nucleophile.
- Primary $\left(1^{\circ}\right), 2^{\circ}$, and 3° amines can be prepared.

Reactions of amines

[1] Reaction as a base (25.9)

[2] Nucleophilic addition to aldehydes and ketones (25.11)

With 1° amines:

With 2° amines:

[3] Nucleophilic substitution with acid chlorides and anhydrides (25.11)

[4] Hofmann elimination (25.12)

[5] Reaction with nitrous acid (25.13)

With 1° amines:

With 2° amines:

Reactions of diazonium salts

[1] Substitution reactions (25.14)

[2] Coupling to form azo compounds (25.15)

(a strong electrondonor group)

Chapter 25-4

Practice Test on Chapter Review

1. Give a systematic name for each of the following compounds.
a.

b.

2. (a) Which compound is the weakest base? (b) Which compound is the strongest base?

A

B

C

D
3. (a) Which compound is the weakest base? (b) Which compound is the strongest base?

A

B

C

D
4. Draw the organic products formed in each of the following reactions.
a.

d.

b.

$\xrightarrow[{\text { [2] } \mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{Br}}]{\text { [1] } \mathrm{KOH}}$
[3] ${ }^{-} \mathrm{OH}, \mathrm{H}_{2} \mathrm{O}$
e.

$\xrightarrow[{\text { [2] } \mathrm{Ag}_{2} \mathrm{O}}]{\text { [1] } \mathrm{CH}_{3} \mathrm{I} \text { (excess) }}$
c.

5. Draw the products formed when the given amine is treated with [1] $\mathrm{CH}_{3} \mathrm{I}$ (excess); [2] $\mathrm{Ag}_{2} \mathrm{O} ;[3] \Delta$, and indicate the major product. You need not consider any stereoisomers formed in the reaction.

6. What organic starting materials are needed to synthesize \mathbf{B} by reductive amination?

Answers to Practice Test

1.a. N-ethyl-2,4-dimethyl-3heptanamine
b. N-ethyl-3methylcyclohexanamine
2.a. B
b. C
3.a. C
b. B
4.
a.

b.

c.

d.

e.

5.

major
6.

Answers to Problems

25.1 Amines are classified as $1^{\circ}, 2^{\circ}$, or 3° by the number of alkyl groups bonded to the nitrogen atom.
a.

b.

25.2
a.

b.

Chapter 25-6
25.3 The N atom of a quaternary ammonium salt is a stereogenic center when the N is surrounded by four different groups. All stereogenic centers are circled.
a.

b.

N has 3 similar groups.
25.4
a.
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CH}_{3}$
2-butanamine
or sec-butylamine
c.

N, N-dimethylcyclohexanamine
e.

N-ethyl-3-hexanamine
b.
$\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NH}$ dibutylamine
d.

2-methyl-5-nonanamine
f.

2-methyl- N -propylcyclopentanamine
25.5 $\mathrm{An} \mathbf{N H}_{2}$ group named as a substituent is called an amino group.
a. 2,4-dimethyl-3-hexanamine

c. N-isopropyl- p-nitroaniline
e. N, N-dimethylethylamine
g. N-methylaniline

b. N-methylpentylamine
d. N -methylpiperi
f. 2-aminocyclohexanone

h. m-ethylaniline

25.6 Primary $\left(1^{\circ}\right)$ and 2° amines have higher bp's than similar compounds (like ethers) incapable of hydrogen bonding, but lower bp's than alcohols that have stronger intermolecular hydrogen bonds. Tertiary amines $\left(3^{\circ}\right)$ have lower boiling points than 1° and 2° amines of comparable molecular weight because they have no $\mathrm{N}-\mathrm{H}$ bonds.

alkane lowest boiling point

ether intermediate boiling point

amine
$\mathrm{N}-\mathrm{H}$ can hydrogen bond.
25.7 The NH signal occurs between 0.5 and 5.0 ppm . The protons on the carbon bonded to the amine nitrogen are deshielded and typically absorb at $2.3-3.0 \mathrm{ppm}$. The NH protons are not split.

25.8 The atoms of 2-phenylethylamine are in bold.
a.

lysergic acid diethyl amide
b.

25.9 $\mathrm{S}_{\mathrm{N}} 2$ reaction of an alkyl halide with NH_{3} or an amine forms an amine or an ammonium salt.
a.

b.

25.10 The Gabriel synthesis converts an alkyl halide into a 1° amine by a two-step process: nucleophilic substitution followed by hydrolysis.
a.

b.

c.

25.11 The Gabriel synthesis prepares 1° amines from alkyl halides. Since the reaction proceeds by an $\mathrm{S}_{\mathrm{N}} 2$ mechanism, the halide must be CH_{3} or 1°, and X can't be bonded to an $s p^{2}$ hybridized C .
a.

aromatic

An $\mathrm{S}_{\mathrm{N}} 2$ does not occur on an aryl halide.
cannot be made by
Gabriel synthesis
b.

can be made by Gabriel synthesis
c.

2° amine
cannot be made by Gabriel synthesis
d.

N on $3^{\circ} \mathrm{C}$ $\mathrm{An} \mathrm{S}_{\mathrm{N}} 2$ does not occur on a 3° RX. cannot be made by Gabriel synthesis

Chapter 25-8
25.12 Nitriles are reduced to 1° amines with LiAlH_{4}. Nitro groups are reduced to 1° amines using a variety of reducing agents. Primary $\left(1^{\circ}\right), 2^{\circ}$, and 3° amides are reduced to $1^{0}, 2^{\circ}$, and 3° amines respectively, using LiAlH_{4}.
a.

b.

c.

25.13 Primary $\left(1^{\circ}\right), 2^{\circ}$, and 3° amides are reduced to $1^{\circ}, 2^{\circ}$, and 3° amines respectively, using LiAlH_{4}.
a.

c.

b.

25.14 Only amines with a CH_{2} or CH_{3} bonded to the N can be made by reduction of an amide.
a.

N bonded to benzene cannot be made by reduction
b.

N bonded to CH_{2} can be made by reduction of an amide
c.

N bonded to a $3^{\circ} \mathrm{C}$ cannot be made by reduction of an amide
d.

N on $2^{\circ} \mathrm{C}$ on both sides cannot be made by reduction of an amide
25.15 Reductive amination is a two-step method that converts aldehydes and ketones into $1^{\circ}, 2^{\circ}$, and 3° amines. Reductive amination replaces a $\mathrm{C}=\mathrm{O}$ by a $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{N}$ bond.
a.

c.

b.

d.

25.16 Reductive amination occurs using the ketone in \mathbf{E} and the amine in \mathbf{D}.

25.17
a.

b.

25.18
a.

phentermine
Only amines that have a C bonded to a H and N atom can be made by reductive amination; that is, an amine must have the following structural feature:

In phentermine, the C bonded to N is not bonded to a H , so it cannot be made by reductive amination.
b. systematic name: 2-methyl-1-phenyl-2-propanamine
25.19 The $\mathrm{p} K_{\mathrm{a}}$ of many protonated amines is $10-11$, so the $\mathrm{p} K_{\mathrm{a}}$ of the starting acid must be less than 10 for equilibrium to favor the products. Amines are thus readily protonated by strong inorganic acids (e.g., HCl and $\mathrm{H}_{2} \mathrm{SO}_{4}$) and by carboxylic acids.
a.

 products favored
25.20 An amine can be separated from other organic compounds by converting it to a water-soluble ammonium salt by an acid-base reaction. In each case, the extraction procedure would employ the following steps:

- Dissolve the amine and either \mathbf{X} or \mathbf{Y} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
- Add a solution of $10 \% \mathrm{HCl}$. The amine will be protonated and dissolve in the aqueous layer, while \mathbf{X} or \mathbf{Y} will remain in the organic layer as a neutral compound.
- Separate the layers.
a.
 and

- soluble in $\mathrm{H}_{2} \mathrm{O}$ $+$

- insoluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
- insoluble in $\mathrm{H}_{2} \mathrm{O}$
- soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Chapter 25-10
b. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}$ and $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O} \xrightarrow{\mathrm{H}-\mathrm{Cl}}$

Y

- soluble in $\mathrm{H}_{2} \mathrm{O} \quad$ - insoluble in $\mathrm{H}_{2} \mathrm{O}$
- insoluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2} \quad$ - soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

$$
\text { - soluble in } \mathrm{CH}_{2} \mathrm{Cl}_{2}
$$

25.21 Primary $\left(1^{\circ}\right), 2^{\circ}$, and 3° alkylamines are more basic than NH_{3} because of the electrondonating inductive effect of the R groups.
a. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ and NH_{3} 2° alkylamine
$\begin{array}{cc}\text { b. } \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2} & \text { and } \quad \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2} \\ 1^{\circ} \text { alkylamine } & 1^{\circ} \text { alkylamine } \\ \text { stronger base } & \mathrm{Cl} \text { is electron withdrawing. } \\ \text { weaker base }\end{array}$
CH_{3} groups are electron donating. stronger base
25.22 Arylamines are less basic than alkylamines because the electron pair on N is delocalized. Electron-donor groups add electron density to the benzene ring making the arylamine more basic than aniline. Electron-withdrawing groups remove electron density from the benzene ring, making the arylamine less basic than aniline.
a.

electronwithdrawing group least basic

arylamine intermediate basicity

electrondonating group
b.

electronwithdrawing group least basic

arylamine intermediate basicity

alkylamine most basic
25.23 Amides are much less basic than amines because the electron pair on N is highly delocalized.

25.24

25.25

a.

This electron pair is delocalized, making it a weaker base.
 This compound is similar to DMAP in Problem 25.24a.

25.26 Amines attack carbonyl groups to form products of nucleophilic addition or substitution.
a.

b.

c.

25.27 [1] Convert the amine (aniline) into an amide (acetanilide).
[2] Carry out the Friedel-Crafts reaction.
[3] Hydrolyze the amide to generate the free amino group.
a.

b.

25.28

(no 3-D geometry shown here)

Reaction coordinate

Chapter 25-12

25.29

a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{NH}_{2} \xrightarrow[{\substack{\text { [2] } \mathrm{Ag}_{2} \mathrm{O} \\ \text { [3] } \Delta}}]{\text { [1] } \mathrm{CH}_{3} \mathrm{I} \text { (excess) }} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$
c.

[3] Δ

b. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHNH}_{2} \xrightarrow[{\substack{[2] \mathrm{Ag}_{2} \mathrm{O} \\[3] \Delta}}]{[1] \mathrm{CH}_{3} \mathrm{I} \text { excess) }} \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$
25.30 In a Hofmann elimination, the base removes a proton from the less substituted, more accessible β carbon atom, because of the bulky leaving group on the nearby α carbon.
a.

major product
b.

$\xrightarrow[{\substack{\text { [2] } \mathrm{Ag}_{2} \mathrm{O} \\ \text { [3] } \Delta}}]{\text { [1] } \mathrm{CH}_{3} \mathrm{I} \text { (excess) }}$

c.
 substituted β C

25.31

a.

c.

b.

d.

25.32
a.

c.

$\xrightarrow[\mathrm{HCl}]{\mathrm{NaNO}_{2}}$

b. $\mathrm{CH}_{3} \mathrm{CH}_{2}-\stackrel{H}{\mathrm{~N}}-\mathrm{CH}_{3} \xrightarrow[\mathrm{HCl}]{\mathrm{NaNO}_{2}} \xrightarrow[\substack{\text { N } \\ \mathrm{NO}}]{\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{N}-\mathrm{CH}_{3}}$
d.

25.33
a. $\xrightarrow[{[2] \mathrm{CuBr}}]{\left[\mathrm{NH}_{2} \mathrm{NaNO}_{2}, \mathrm{HCl}\right.}$
c. $\mathrm{CH}_{3} \mathrm{O} \longrightarrow \mathrm{NH}_{2} \xrightarrow{[2] \mathrm{HBF}_{4}}$

b.

d.

25.34

a.

b.

c.
 (from a.)
d.

 $\xrightarrow[{\text { [2] } \mathrm{H}_{3} \mathrm{PO}_{2}}]{\text { [1] } \mathrm{NaNO}_{2}, \mathrm{HCl}}$

25.35
a.

c.

b.

25.36 To determine what starting materials are needed to synthesize a particular azo compound, always divide the molecule into two components: one has a benzene ring with a diazonium ion, and one has a benzene ring with a very strong electron-donor group.
a.

b.

Chapter 25-14
25.37
a.

b.

25.38

To bind to fabric, methyl orange (an anion) needs to interact with positively charged sites. Since Dacron is a neutral compound with no cationic sites on the chain, it does not bind methyl orange well.
25.39
a.

4,6-dimethyl-1-heptanamine
b.

N, N-diethylcycloheptanamine
25.40

25.41
a, b.

25.42

a. $\mathrm{CH}_{3} \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ N -methyl-1-butanamine (N-methylbutylamine)
b.

c.

N -methyl- N -propylcyclohexanamine
d. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}$
tripropylamine
e. $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{NH}$ diphenylamine
h.
 2-ethylpyrrolidine
i. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
2-methyl-3-hexanamine
N -tert-butyl- N -ethylaniline
g.

4-aminocyclohexanone
j.

3-ethyl-2-methylcyclohexanamine

25.43

a. cyclobutylamine

b. N -isobutylcyclopentylamine

c. tri-tert-butylamine $\mathrm{N}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]_{3}$
d. N, N-diisopropylaniline

e. N-methylpyrrole

f. N -methylcyclopentylamine

g. cis-2-aminocyclohexanol

h. 3-methyl-2-hexanamine

i. 2-sec-butylpiperidine

j. (2S)-2-heptanamine

25.44

1-butanamine

N -methyl-1-propanamine

2-butanamine

diethylamine

2-methyl-1-propanamine

N -methyl-2-propanamine

2-methyl-2-propanamine

N, N-dimethylethanamine
25.45 [* denotes a stereogenic center.]
a.

1 stereogenic center 2 stereoisomers

25.46
a. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{NH}$ or

$s p^{3}$ hybridized $\mathrm{N} \quad s p^{2}$ hybridized N stronger base weaker base
b. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{NH}$ or $\left(\mathrm{ClCH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NH}$
2° alkylamine
Cl is electron withdrawing. weaker base
2° alkylamine
stronger base
25.47
a.

b.

delocalized electron pair on N least basic
 $s p^{2}$ hybridized N intermediate basicity

$s p^{3}$ hybridized N most basic least basic basicity
c.

electronwithdrawing group least basic

d. $\quad\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{NH}$
d. $\begin{aligned} &\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{NH} \\ & \text { diarylamine } \\ & \text { least basic }\end{aligned}$
d. $\begin{aligned} & \left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{NH} \\ & \text { diarylamine } \\ & \text { least basic }\end{aligned}$
intermediate
basicity
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
 donating group
most basic

arylamine intermediate
basicity
25.48 The electron-withdrawing inductive effect of the phenyl group stabilizes benzylamine, making its conjugate acid more acidic than the conjugate acid of cyclohexanamine. The conjugate acid of aniline is more acidic than the conjugate acid of benzylamine, since loss of a proton generates a resonance-stabilized amine, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$.

$\mathrm{p} K_{\mathrm{a}}=10.7$

alkylamine cyclohexanamine

$\mathrm{p} K_{\mathrm{a}}$ intermediate

electron-withdrawing inductive effect of the $s p^{2}$ hybridized C's benzylamine

$\mathrm{p} K_{\mathrm{a}}=4.6$
\downarrow aromatic amine aniline
25.49 The most basic N atom is protonated on treatment with acid.
a.

25.50
a.

$\mathrm{N}_{\mathrm{b}}<\mathrm{N}_{\mathrm{a}}<\mathrm{N}_{\mathrm{c}}$
Order of basicity: $\mathrm{N}_{\mathrm{b}}<\mathrm{N}_{\mathrm{a}}<\mathrm{N}_{\mathrm{c}}$
N_{b} - The electron pair on this N atom is delocalized on the O atom; least basic.
N_{a} - The electron pair on this N atom is not delocalized, but is on an $s p^{2}$ hybridized atom. N_{c} - The electron pair on this N atom is on an $s p^{3}$ hybridized N ; most basic.
b.

Order of basicity: $\mathrm{N}_{\mathrm{b}}<\mathrm{N}_{\mathrm{a}}<\mathrm{N}_{\mathrm{c}}$
N_{b} - The electron pair on this N atom is delocalized on the aromatic five-membered ring; least basic.
N_{a} - The electron pair on this N atom is not delocalized, but is on an $s p^{2}$ hybridized atom.
N_{c} - The electron pair on this N atom is on an $s p^{3}$ hybridized N ; most basic.
25.51 The para isomer is the weaker base because the electron pair on its NH_{2} group can be delocalized onto the NO_{2} group. In the meta isomer, no resonance structure places the electron pair on the NO_{2} group, and fewer resonance structures can be drawn:

Chapter 25-18

25.52

A
B
$\mathrm{p} K_{\mathrm{a}}$ of the conjugate acid $=5.2 \quad \mathrm{p} K_{\mathrm{a}}$ of the conjugate acid $=7.29$ Resonance structures that place a double bond stronger conjugate acid weaker conjugate acid between the N atom and the benzene ring are
weaker base
The electron pair of this arylamine is delocalized on the benzene ring, decreasing its basicity.
weaker conjugate acid stronger base destabilized. Since the electron pair is more localized on N , compound B is more basic.

25.53

weaker conjugate base
The electron pair is delocalized, decreasing the basicity. The N atom is $s p^{2}$ hybridized.

pyrrolidine
$\mathrm{p} K_{\mathrm{a}}=44$
stronger conjugate base The electron pair is not delocalized on the ring. The N atom is $s p^{3}$ hybridized.
25.54
a. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br} \xrightarrow[\text { excess }]{\mathrm{NH}_{3}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2} \quad$ d. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}_{2} \xrightarrow[{\text { [2] } \mathrm{H}_{2} \mathrm{O}}]{\text { [1] } \mathrm{LiAlH}_{4}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
b. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br} \xrightarrow{\mathrm{NaCN}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN} \xrightarrow[{\text { [2] } \mathrm{H}_{2} \mathrm{O}}]{\text { [1] } \mathrm{LiAlH}_{4}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
c. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NO}_{2} \xrightarrow[\text { Pd-C }]{\stackrel{\mathrm{H}_{2}}{\longrightarrow}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
e. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO} \xrightarrow[\mathrm{NaBH}_{3} \mathrm{CN}]{\mathrm{NH}_{3}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
a. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{NH}$

b.

c.

d.

25.56 In reductive amination, one alkyl group on N comes from the carbonyl compound. The remainder of the molecule comes from NH_{3} or an amine.
a.

b.

c. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \Longrightarrow\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NH}$

or $\mathrm{H}_{-\mathrm{C}}^{\mathrm{C}} \mathrm{O} \mathrm{O}$

d.

25.57
a.

b.

$\xrightarrow{\mathrm{NaBH}_{3} \mathrm{CN}}$
c.

d.

25.58
a.

b.

c.

d.

Chapter 25-20
e.

f.

g.

h.

25.59 Use the directions from Answer 25.20. Separation can be achieved because benzoic acid reacts with aqueous base and aniline reacts with aqueous acid according to the following equations:

Toluene $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}\right)$, on the other hand, is not protonated or deprotonated in aqueous solution, so it is always soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and insoluble in $\mathrm{H}_{2} \mathrm{O}$. The following flow chart illustrates the process.

25.60
a.

b.

c.

i. The product in (g) $\frac{[1] \mathrm{LiAlH}_{4}}{[2] \mathrm{H}_{2} \mathrm{O}}$
d.

e. $\xrightarrow[\text { (excess) }]{\mathrm{CH}_{3} \mathrm{I}}$

j. The product in (h)

b.

c.

d. $\xrightarrow[\text { excess }]{\mathrm{CH}_{3} \mathrm{I}} \mathrm{CH}_{3} \xrightarrow{+}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{I}^{-}$
e. $\xrightarrow{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{O}} \mathrm{CH}_{3} \rightarrow \mathrm{~N}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$
f. $\xrightarrow[\mathrm{AlCl}_{3}]{\mathrm{CH}_{3} \mathrm{COCl}} \mathrm{CH}_{3} \xrightarrow{\substack{\mathrm{AlCl}_{3} \\ \mathrm{NH}_{2}}}$
g.

h. $\xrightarrow[\mathrm{HCl}]{\mathrm{NaNO}_{2}} \mathrm{CH}_{3} \xrightarrow{+} \mathrm{N}_{2} \mathrm{Cl}^{-}$
i. Step (b), then $\frac{\mathrm{CH}_{3} \mathrm{COCl}}{\mathrm{AlCl}_{3}}$

j. $\xrightarrow[\mathrm{NaBH}_{3} \mathrm{CN}]{\mathrm{CH}_{3} \mathrm{CHO}} \mathrm{CH}_{3} \xrightarrow{ } \mathrm{NHCH}_{2} \mathrm{CH}_{3}$
25.62

a. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{2} \xrightarrow[{\substack{[2] \mathrm{Ag}_{2} \mathrm{O} \\[3] \Delta}}]{[1] \mathrm{CH}_{3} \mathrm{I} \text { (excess) }} \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}=\mathrm{CH}_{2}$

Chapter 25-22
b.

e.

$\mathrm{CH}_{2}=\mathrm{CH}_{2}$ major product $+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\left(\mathrm{CH}_{3}\right)_{2}+$ $\mathrm{CH}_{2}=\mathrm{CHCH}_{3}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$

$+\quad(E+Z)$
 $(E+Z)$
d.

25.63
a.

b.

c.

d.

e.

f.

25.64
a.

benzphetamine
b. Amides that can be reduced to benzphetamine:

c. Amines + carbonyl compounds that form benzphetamine by reductive amination:

d.

25.65

a.

g.

h. $\square \mathrm{NH}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO} \xrightarrow{\mathrm{NaBH}_{3} \mathrm{CN}} \square \mathrm{N}-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$

i.

d.

j. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\underset{\substack{\mathrm{N} \\ \mathrm{H}}}{\mathrm{N}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}} \xrightarrow[{\substack{\text { [2] } \mathrm{Ag}_{2} \mathrm{O} \\ \text { [3] } \Delta}}]{\text { [1] } \mathrm{CH}_{3} \mathrm{I} \text { (excess) }}$
e.
 $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCH}\left(\mathrm{CH}_{3}\right)_{2}$ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$
f. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}+\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}\right)_{2} \mathrm{O} \longrightarrow$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHCOC}_{6} \mathrm{H}_{5}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$

Chapter 25-24
25.66 NH_{2} and H must be anti for the Hofmann elimination. Rotate around the $\mathrm{C}-\mathrm{C}$ bond so the NH_{2} and H are anti.
a.

b.
 counterclockwise
c.

25.67

25.68

a. $\mathrm{H}_{2} \mathrm{O}$

d. CuBr

h. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$

b. $\mathrm{H}_{3} \mathrm{PO}_{2}$

c. CuCl

e. CuCN

f. HBF_{4}

i. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$

g. NaI

j. KI

25.69

25.70

a.

b.

Chapter 25-26
25.71

25.72

Overall reaction:

$+$
 $+$

The steps:

25.73 A nitrosonium ion ($\left.{ }^{+} \mathrm{NO}\right)$ is a weak electrophile so electrophilic aromatic substitution occurs only with a strong electron-donor group that stabilizes the intermediate carbocation.

25.74
a.

b.

25.75

a.

b.
 $\xrightarrow[{\text { [2] } \mathrm{NaI}}]{\text { [1] } \mathrm{NaNO}_{2}, \mathrm{HCl}}$ I (+ ortho isomer)
c.
 $\xrightarrow[{\text { [2] } \mathrm{CuCN}}]{\text { [1] } \mathrm{NaNO}_{2}, \mathrm{HCl}}$

d.
 (+ para isomer)
e.

 COOH

Chapter 25-28
f.

25.76
a.

b.

c.

d.

25.77
[1]

[2]

[3]

[4]

[5]

25.78

25.79
a.

b.

c.

Chapter 25-30

25.80

a.

b.

c.

d.

e.

f.

25.81

a.

b.

c.

25.82
a.

b.

c.

(+ ortho isomer)

d.

Chapter 25-32
e.

Probably a strong enough activator that the Friedel-Crafts reaction will still occur.

25.83

molecular weight $=87$
$\mathrm{C}_{5} \mathrm{H}_{13} \mathrm{~N}$
two IR peaks $=1^{\circ}$ amine

25.84

Compound A: $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}$
IR absorption at $3400 \mathrm{~cm}^{-1} \rightarrow 2^{\circ}$ amine
${ }^{1} \mathrm{H}$ NMR signals at (ppm):
1.3 (triplet, 3 H) CH_{3} adjacent to $2 \mathrm{H}^{\prime} \mathrm{s}$
3.1 (quartet, 2 H) CH_{2} adjacent to 3 H 's
3.6 (singlet, 1 H) amine H
6.8-7.2 (multiplet, 5 H) benzene ring

Compound B: $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}$
IR absorption at $3310 \mathrm{~cm}^{-1} \rightarrow 2^{\circ}$ amine
${ }^{1} \mathrm{H}$ NMR signals at (ppm): 1.4 (singlet, 1 H) amine H 2.4 (singlet, 3 H) CH_{3} 3.8 (singlet, 2 H) CH_{2} 7.2 (multiplet, 5 H) benzene ring

Compound C: $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}$
IR absorption at 3430 and $3350 \mathrm{~cm}^{-1} \rightarrow 1^{\circ}$ amine
${ }^{1} \mathrm{H}$ NMR signals at (ppm): 1.3 (triplet, 3 H) CH_{3} near CH_{2} 2.5 (quartet, 2 H) CH_{2} near CH_{3} 3.6 (singlet, 2 H) amine H's 6.7 (doublet, 2 H) para disubstituted 7.0 (doublet, 2 H) benzene ring

Compound D:
Molecular ion at $m / z=71: \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NO}$ (possible formula)
IR absorption at $3600-3200 \mathrm{~cm}^{-1} \rightarrow \mathrm{OH}$

$$
2263 \mathrm{~cm}^{-1} \rightarrow \mathrm{CN}
$$

Use integration values and the molecular formula to determine the number of H's that give rise to each signal.
${ }^{1} \mathrm{H}$ NMR signals at (ppm):
2.6 (triplet, 2 H) CH_{2} adjacent to 2 H 's
3.2 (singlet, 1 H) OH
3.9 (triplet, 2 H) CH_{2} adjacent to 2 H 's

Compound E:

Molecular ion at $m / z=75: \mathrm{C}_{3} \mathrm{H}_{9} \mathrm{NO}$ (possible formula)
IR absorption at $3600-3200 \mathrm{~cm}^{-1} \rightarrow \mathrm{OH}$

$$
3636 \mathrm{~cm}^{-1} \rightarrow \mathrm{~N}-\mathrm{H} \text { of amine }
$$

${ }^{1} \mathrm{H}$ NMR signals at (ppm):
1.6 (quintet, 2 H) CH_{2} split by $2 \mathrm{CH}_{2}$'s
2.5 (singlet, 3 H) NH_{2} and OH
2.8 (triplet, 2 H) CH_{2} split by CH_{2}
3.7 (triplet, 2 H) CH_{2} split by CH_{2}
25.86 Guanidine is a strong base because its conjugate acid is stabilized by resonance. This resonance delocalization makes guanidine easily donate its electron pair; thus it's a strong base.

25.87 The compound with the most available electron pair or the compound with the highest electron density on an atom (N in this case) is the strongest base. Pyrrole is the weakest base because its lone pair is delocalized on the five-membered ring to make it aromatic. Both imidazole and thiazole contain $s p^{2}$ hybridized N atoms with electron pairs that are localized on N . Imidazole is a stronger base than thiazole, because its second N atom is more basic than thiazole's S atom, so it places more electron density on N by a resonance effect.

25.88

Chapter 25-34

25.89

One possibility:
a.

$\downarrow \mathrm{SOCl}_{2}$

$25.90 \mathrm{CH}_{2}=\mathrm{O}$ reacts with the amine to form an intermediate imine, which undergoes an intramolecular Diels-Alder reaction.

Chapter 26 Carbon-Carbon Bond-Forming Reactions in Organic Synthesis

Chapter Review

Coupling reactions

[1] Coupling reactions of organocuprate reagents (26.1)

- R'X can be $\mathrm{CH}_{3} \mathrm{X}, \mathrm{RCH}_{2} \mathrm{X}, 2^{\circ}$ cyclic halides, vinyl halides, and aryl halides.
- X may be Cl, Br, or I.
- With vinyl halides, coupling is stereospecific.
[2] Suzuki reaction (26.2)

[3] Heck reaction (26.3)

- $\mathrm{R}^{\prime} \mathrm{X}$ is most often a vinyl halide or aryl halide.
- With vinyl halides, coupling is stereospecific.

Chapter 26-2

Practice Test on Chapter Review

1. a. Which functional groups react with lithium dialkyl cuprates?
2. epoxides
3. vinyl halides
4. acid chlorides
5. Compounds [1] and [2] both react with $\mathrm{R}_{2} \mathrm{CuLi}$.
6. Compounds [1], [2], and [3] all react with $\mathrm{R}_{2} \mathrm{CuLi}$.
b. Which of the following statements is (are) true for the Suzuki reaction?
7. Arylboranes can serve as one reactant.
8. The reaction is stereospecific.
9. The reaction occurs between a vinyl or aryl halide and an alkene in the presence of a palladium catalyst.
10. Statements [1] and [2] are both true.
11. Statements [1], [2], and [3] are all true.
c. Which of the following compounds can react with $\mathrm{CH}_{2}=\mathrm{CHCN}$ in a Heck reaction?
12. Br
13. Both [1] and [2] can react.
14.

5. Compounds [1], [2], and [3] can all react.
3. $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
d. Which of the following compounds yields a pair of enantiomers on reaction with the SimmonsSmith reagent?
1.

3.

2.

4. Compounds [1] and [2] both yield a pair of enantiomers.
5. Compounds [1], [2], and [3] all yield a pair of enantiomers.
e. Which of the following compounds can be made by a ring-closing metathesis reaction?
1.

3.

2.

4. Compounds [1] and [2] can both be prepared.
5. Compounds [1], [2], and [3] can all be prepared.
f. Which of the following compounds can be prepared from $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$ by a Suzuki reaction? You may use other organic compounds or inorganic reagents.
1.

2.

3.

4. Compounds [1] and [2] can both be prepared.
5. Compounds [1], [2], and [3] can all be prepared.
2. Draw the product formed in each reaction. Indicate the stereochemistry around double bonds and stereogenic centers when necessary.
a.

e.
 $\xrightarrow[\mathrm{KOC}\left(\mathrm{CH}_{3}\right)_{3}]{\mathrm{CHBr}}$
b.

f.

c.

g.

d.

3. What starting material is needed to synthesize each compound by ring-closure metathesis?
a.

b.

c.

Chapter 26-4

Answers to Practice Test

1.a. 52.
b. 4
c. 4
d. 2
e. 3
a.

b.

e.

f. 4
c.

f.

d.

3.
a.

b.

c.

Answers to Problems

26.1 A new $\mathrm{C}-\mathrm{C}$ bond is formed in each coupling reaction.
a.

b.

c.

$\xrightarrow{\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{CuLi}}$

d.

26.2

26.3

a.
 or

b.

c.

26.4

a.

b.

 $\xrightarrow[\mathrm{NaOH}]{\mathrm{Pd}\left(\mathrm{PPH}_{3}\right)_{4}}$

c.

d.

26.5 The Suzuki reaction forms a new carbon-carbon bond between a vinyl halide and an arylborane.

26.6
a.

b.

c.

Chapter 26-6

26.7

a.

b.

c.

d.

26.8 Locate the double bond with the aryl, COOR, or CN substituent, and break the molecule into two components at the end of the $\mathrm{C}=\mathrm{C}$ not bonded to one of these substituents.
a.

b.

c.

 $+\Omega \mathrm{CO}_{2} \mathrm{CH}_{3}$
26.9 Add the carbene carbon from either side of the alkene.
a.

c.

26.10
a. $\rightleftharpoons \frac{\mathrm{CHCl}_{3}}{\operatorname{KOC}\left(\mathrm{CH}_{3}\right)_{3}} \overbrace{\mathrm{Cl}}^{\mathrm{Cl}}$
b.

c.

(from b.)
26.11
a.

c. $\int \frac{\mathrm{CH}_{2} \mathrm{I}_{2}}{\mathrm{Zn}(\mathrm{Cu})}$
 $+\mathrm{ZnI}_{2}$
b.
 $+\mathrm{ZnI}_{2}$
26.12 The relative position of substituents in the reactant is retained in the product.

26.13

c.

b.

$\left(\mathrm{CH}_{2}=\mathrm{CH}_{2}\right.$ is also formed in each reaction.)

26.14

cis-2-pentene

There are four products formed in this reaction including stereoisomers, and therefore, it is not a practical method to synthesize 1,2-disubstituted alkenes.

26.15

a.

b.

Chapter 26-8
26.16

26.17 Cleave the $\mathrm{C}=\mathrm{C}$ bond in the product, and then bond each carbon of the original alkene to a CH_{2} group using a double bond.
a.

c.

b.

26.18 Inversion of configuration occurs with the substitution of the methyl group for the tosylate.
a.

b.

26.19

26.20

a.

b.

c.

d.

e.

f.

g.

[3] $\sim \mathrm{Br}+\mathrm{Pd}$ catalyst

h. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{H}$

26.21

a.

b.

c.

d.

Chapter 26-10
26.22

It is not possible to synthesize diene \mathbf{D} using a Suzuki reaction with ethynylcyclohexane as starting material. Hydroboration of ethynylcyclohexane adds the elements of H and B in a syn fashion, affording a trans vinylborane. Since the Suzuki reaction is stereospecific, one of the double bonds in the product must be trans.
26.23 Locate the styrene part of the molecule, and break the molecule into two components. The second component in each reaction is styrene, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CH}_{2}$.
a.

styrene part
b.

c.

styrene part

26.24

26.25 Add the carbene carbon from either side of the alkene.
a.

c.

d.

e.

f.

26.26 Since the new three-membered ring has a stereogenic center on the C bonded to the phenyl group, the phenyl group can be oriented in two different ways to afford two stereoisomers. These products are diastereomers of each other.

26.27 High dilution conditions favor intramolecular metathesis.
a.

b.

26.28 Retrosynthetically break the double bond in the cyclic compound and add a new $=\mathrm{CH}_{2}$ at each end to find the starting material.

b.

c.

c.

26.29 Alkene metathesis with two different alkenes is synthetically useful only when both alkenes are symmetrically substituted; that is, the two groups on each end of the double bond are identical to the two groups on the other end of the double bond.

Chapter 26-12
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$

b.

c.

26.30

26.31 All double bonds can have either the E or Z configuration.
a.

c.

b.

26.32

a.

b.

c.
 $+$

e.

f.

g.

h.

Product in (a)
i.

. $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$
[3] Br

[2]

$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$
26.33

26.34 This reaction follows the Simmons-Smith reaction mechanism illustrated in Mechanism 26.5.

26.35

1,4-addition of the sulfur ylide to the β carbon
a sulfur ylide

Chapter 26-14
26.36

26.37

a.

b. This suggests that the stereochemistry in Step [3] must occur with syn elimination of H and Pd to form \mathbf{E}. Product \mathbf{F} cannot form because the only H on the C bonded to the benzene ring is trans to the Pd species, so it cannot be removed if elimination occurs in a syn fashion.
26.38

A
26.39

Carbon-Carbon Bond-Forming Reactions in Organic Synthesis 26-15

26.40

26.41

a. $\mathrm{CH}_{3} \mathrm{O}$

Synthesize these two components, and then use a Heck reaction to synthesize the product.

b.

Chapter 26-16
26.42
a.

b.

(from a.)
c.

(from a.)
26.43
a.

b.

(from a.)
c.

d.

26.44

a.

b

c.

d.

Chapter 26-18
26.45
a.

Possibility [1]:

${ }_{[1]}^{[1] ~} \mathrm{NaH}$ [2] $\mathrm{CH}_{3} \mathrm{I}$

Possibility [2]:

b.

The acidic OH makes it impossible to prepare an organolithium reagent from this aryl halide, so this compound must be used as the aryl halide that couples with the organoborane from bromobenzene.

$+$

c.

This can't be converted to an organoborane reagent via an organolithium reagent.

26.46
a.

Synthesis of starting material:

b.

Synthesis of starting material:

Chapter 26-20
26.47
a.

Synthesis of starting material:

b.

Synthesis of starting material:

26.48

26.49

a.

b.
 $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{4} \mathrm{~N}^{+} \mathrm{F}^{-}$

c.

d.

e.

f.

Rer

26.50
a.

b.

26.51 There is more than one way to form \mathbf{Z} by metathesis reactions. One possibility involves ring opening of the bicyclic alkene followed by successive ring closures to generate the five- and seven-membered rings.

26.52

26.53

26.54 a. Reaction of a terminal alkene with the catalyst forms a metal-carbene that undergoes an intramolecular reaction with the triple bond, generating a new metal-carbene. A second intramolecular reaction forms the bicyclic product.

Chapter 26-24
b. Two products are possible because the cascade of reactions can begin at two different double bonds.

Chapter 27 Pericyclic Reactions

Chapter Review

Electrocyclic reactions (27.3)

Woodward-Hoffmann rules for electrocyclic reactions

Number of π bonds	Thermal reaction	Photochemical reaction
Even	Conrotatory	Disrotatory
Odd	Disrotatory	Conrotatory

Examples

The stereochemistry of a thermal electrocyclic reaction is opposite to that of a photochemical electrocyclic reaction.

- A thermal electrocyclic reaction with an even number of π bonds occurs in a conrotatory fashion.
- A photochemical electrocyclic reaction with an even number of π bonds occurs in a disrotatory fashion.

Cycloaddition reactions (27.4)

Woodward-Hoffmann rules for cycloaddition reactions

Number of π bonds	Thermal reaction	Photochemical reaction
Even	Antarafacial	Suprafacial
Odd	Suprafacial	Antarafacial

Examples

[1] A thermal [$4+2]$ cycloaddition takes place in a suprafacial fashion with an odd number of π bonds. An antarafacial photochemical [$4+2]$ cycloaddition to form a six-membered ring cannot occur, because of the geometrical constraints of forming a six-membered ring.

[2] A photochemical [2 + 2] cycloaddition takes place in a suprafacial fashion with an even number of π bonds. An antarafacial thermal [2 +2$]$ cycloaddition to form a four-membered ring cannot occur, because of the geometrical constraints of forming a four-membered ring.

Sigmatropic rearrangements (27.5)

Woodward-Hoffmann rules for sigmatropic rearrangements

Number of electron pairs	Thermal reaction	Photochemical reaction
Even	Antarafacial	Suprafacial
Odd	Suprafacial	Antarafacial

Examples

[1] A Cope rearrangement is a thermal [3,3] sigmatropic rearrangement that converts a 1,5-diene into an isomeric 1,5-diene.

[2] An oxy-Cope rearrangement is a thermal [3,3] sigmatropic rearrangement that converts a 1,5-dien-3-ol into a δ, ε-unsaturated carbonyl compound, after tautomerization of an intermediate enol.

[3] A Claisen rearrangement is a thermal [3,3] sigmatropic rearrangement that converts an unsaturated ether into a γ, δ-unsaturated carbonyl compound.

unsaturated ether $\quad \gamma, \delta$-unsaturated carbonyl compound

Practice Test on Chapter Review

1. a. Which of the following pericyclic reactions is symmetry allowed and readily occurs?
2. a photochemical conrotatory electrocyclic ring closure of a conjugated triene
3. a disrotatory thermal electrocyclic ring opening of a substituted cyclohexadiene
4. a thermal $[2+2]$ cycloaddition
5. Reactions [1] and [2] will both occur.
6. Reactions [1], [2], and [3] will all occur.
b. Which of the following reactions requires suprafacial stereochemistry to be symmetry allowed?
7. a photochemical $[1,5]$ sigmatropic rearrangement
8. a thermal $[8+2]$ cycloaddition
9. a photochemical $[4+2]$ cycloaddition
10. Reactions [1] and [2] are both suprafacial.
11. Reactions [1], [2], and [3] are all suprafacial.
c. What product(s) are formed from the photochemical $[2+2]$ cycloaddition of $(3 E)$-3-hexene?

A

B

C

1. A only
2. B only
3. C only
4. A and B
5. A, B, and C
d. What product(s) are formed from the photochemical electrocyclic ring opening of cis-3,4-dimethylcyclobutene?
6. $(2 E, 4 E)$-2,4-hexadiene
7. $(2 E, 4 Z)$-2,4-hexadiene
8. (3Z)-1,3,5-hexatriene
9. Compounds [1] and [2] are both formed.
10. Compounds [1], [2], and [3] are all formed.

Chapter 27-4
e. What product(s) are formed by the [3,3] sigmatropic rearrangement of 1,5-cyclodecadien-3-ol?

A

B

C

1. A only
2. B only
3. C only
4. A and B
5. A, B, and \mathbf{C}
6. Consider the p orbitals of the terminal carbons of a conjugated polyene with like phases on the same side of the molecule (as in \mathbf{A}) or opposite sides of the molecule (as in \mathbf{B}), and answer each question.

a. Which drawing is consistent with the ground state HOMO of a conjugated triene?
b. Which drawing is consistent with the excited state LUMO of a conjugated diene?
c. Which drawing is consistent with the ground state LUMO for a conjugated tetraene?
7. What type of sigmatropic rearrangement is depicted in each reaction?
a.

b.

Answers to Practice Test

1. a. 4
2. a. \mathbf{A}
3. a. $[3,3]$
b. 2
b. B
b. $[1,3]$
c. 4
c. \mathbf{A}
d. 1
e. 3

Answers to Problems

27.1 Use the following definitions:

- An electrocyclic ring closure is an intramolecular reaction that forms a cyclic product containing one more σ bond and one fewer π bond than the reactant. An electrocyclic ring opening is a reaction in which a σ bond of a cyclic reactant is cleaved to form a conjugated product with one more π bond.
- A cycloaddition is a reaction between two compounds with π bonds that forms a cyclic product with two new σ bonds.
- A sigmatropic rearrangement is a reaction in which a σ bond is broken in the reactant, the π bonds rearrange, and a σ bond is formed in the product.
a.

2π bonds σ bond broken
3π bonds
b.

c.

electrocyclic reaction
d.

27.2 a. For a bonding molecular orbital, the number of bonding interactions is greater than the number of nodes.
b. For an antibonding molecular orbital, the number of bonding interactions is less than the number of nodes.

For 1,3-butadiene:

	Bonding	Nodes	Type of MO
ψ_{1}	3	0	bonding MO
ψ_{2}	2	1	bonding MO
$\psi_{3}{ }^{*}$	1	2	antibonding MO
$\psi_{4}{ }^{*}$	0	3	antibonding MO

Chapter 27-6
27.3 The molecular orbitals of all conjugated dienes look similar.
a.

27.4 a. There are 10 molecular orbitals from the $10 p$ orbitals of the five π bonds.
b. Five molecular orbitals are bonding and five molecular orbitals are antibonding.
c. The lowest energy molecular orbital $(\psi 1)$ has zero nodes.

$$
88888888888
$$

d. The highest energy molecular orbital $\left(\Psi_{10^{*}}\right)$ has nine nodes.

27.5 To draw the product of an electrocyclic reaction, use curved arrows and begin at a π bond. Move the π electrons to an adjacent carbon-carbon bond, and continue in a cyclic fashion.
a.

b.

c.

27.6 Thermal electrocyclic reactions occur in a disrotatory fashion for a conjugated polyene with an odd number of π bonds, and in a conrotatory fashion for a conjugated polyene with an even number of π bonds.
a.

b.

27.7 For an even number of π bonds, thermal electrocyclic reactions occur in a conrotatory fashion.

27.8 Photochemical electrocyclic reactions occur in a conrotatory fashion for a conjugated polyene with an odd number of π bonds, and in a disrotatory fashion for a conjugated polyene with an even number of π bonds.
a.

b.

[The (E, E) diene is favored over the (Z, Z) diene.]
27.9 The photochemical electrocyclic reaction cleaves a six-membered ring to form a hexatriene.

27.10 Use the rules for electrocyclic reactions found in Answers 27.6 and 27.8.
a.

Chapter 27-8
b.

27.11 Use the rules for electrocyclic reactions found in Answer 27.6. A reaction with three π bonds and a disrotatory cyclization is thermal.

27.12 Count the number of π electrons in each reactant to classify the cycloaddition.
a.

$[2+2]$ cycloaddition
b.

c.

27.13 A thermal suprafacial addition is symmetry allowed in a $[4+2]$ cycloaddition because like phases interact.

LUMO of the diene

Like phases interact.

HOMO of the alkene
27.14 A thermal [4 + 2] cycloaddition is suprafacial.

27.15

The dienophile is under the diene, by the rule of endo addition (Section 16.13).
The H's at the ring fusion are cis to each other, but trans to the $\mathrm{CO}_{2} \mathrm{CH}_{3}$ group.
27.16 A photochemical $[2+2]$ cycloaddition is suprafacial.

27.17 a. The photochemical [6+4] cycloaddition involves five π bonds (the total number of π electrons divided by two) and is antarafacial.
b. A thermal $[8+2]$ cycloaddition involves five π bonds and is suprafacial.

Chapter 27-10
27.18 A photochemical [4+2] cycloaddition like the Diels-Alder reaction must proceed by an antarafacial pathway. This would require either the 1,3-diene or the alkene component to twist 180° in order for the like phases of the p orbitals to overlap. Such a rotation is not possible in the formation of a six-membered ring.

27.19 Locate the σ bonds broken and formed, and count the number of atoms that connects them.

$[3,3]$ sigmatropic rearrangement
27.20
a.

b , c . The reaction involves four electron pairs (three π bonds and one σ bond), so it proceeds by an antarafacial pathway under thermal conditions, and by a suprafacial pathway under photochemical conditions.
27.21 Draw the products of each reaction.

b.

c.

27.22 Draw the product after protonation.

27.23 Draw the product of Claisen rearrangement.

c.

b.

27.24

Chapter 27-12
27.25 Predict the stereochemistry of each reaction using Table 27.4.
a. A $[6+4]$ thermal cycloaddition involves five electron pairs, making the reaction suprafacial.
b. A photochemical electrocyclic ring closure of 1,3,5,7,9-decapentaene involves five electron pairs, making the reaction conrotatory.
c. A $[4+4]$ photochemical cycloaddition involves four electron pairs, making the reaction suprafacial.
d. A thermal $[5,5]$ sigmatropic rearrangement involves five electron pairs, making the reaction suprafacial.
27.26 Use the rules found in Answers 27.6 and 27.8.

A

27.27 Draw the product of $[3,3]$ sigmatropic rearrangement of each compound.
a.

[3,3]

b.

27.28 An electrocyclic reaction forms a product with one more or one fewer π bond than the starting material. A cycloaddition forms a ring with two new σ bonds. A sigmatropic rearrangement forms a product with the same number of π bonds, but the π bonds are rearranged. Use Table 27.4 to determine the stereochemistry.
a.

2π bonds
thermal electrocyclic ring closure

- 3π bonds
- disrotatory
b.

c.

27.29 Use the rules for thermal electrocyclic reactions found in Answer 27.6.
a.

b.

27.30 Use the rules for photochemical electrocyclic reactions found in Answer 27.8.
a.

Although conrotatory ring opening could also form, at least in theory, an all- (Z) triene, steric hindrance during ring opening would cause the terminal CH_{3} 's to crash into one another, making this process unlikely.

Chapter 27-14
27.31 Use the rules found in Answer 27.8.
a.

b.

27.32 Use the rules found in Answers 27.6 and 27.8.

c.

d.

27.33 The trans product is indicative of a disrotatory ring closure from the cyclic triene with the given stereochemistry at the double bonds. A disrotatory ring closure with a polyene having three π bonds must occur under thermal conditions.

27.34 A disrotatory cyclization of a reactant with an even number of π bonds must occur under photochemical conditions.

27.35 Use the rules found in Answers 27.6 and 27.8.
a, c.

N 3π bonds

b, c.

27.36 Use the rules found in Answers 27.6 and 27.8.

27.37 Since the reaction involves three π bonds in one reactant and two π bonds in the second reactant, the reaction is a $[6+4]$ cycloaddition. A suprafacial cycloaddition with five π bonds must proceed under thermal conditions.

Chapter 27-16
27.38 The Diels-Alder reaction is a thermal, suprafacial [$4+2]$ cycloaddition.
a.

b.

27.39 A photochemical [2+2] cycloaddition is suprafacial.
a.

b.

27.40 A thermal [4 + 2] cycloaddition is suprafacial.
a.

c.

b.

27.41 1,3-Butadiene can react with itself in a symmetry-allowed thermal [4 +2] cycloaddition to form 4-vinylcyclohexene.

1,5-Cyclooctadiene would have to be formed from 1,3-butadiene by a [4 + 4] cycloaddition, which is not allowed under thermal conditions.

27.42 A series of three $[2+2]$ cycloadditions with E alkenes forms \mathbf{X}.

27.43 Re-draw the reactant and product to more clearly show the relative location of the bonds broken and formed.
a.

b.

c.

27.44 Draw the products of each reaction.
a.

b.

27.45 a. Two [1,5] sigmatropic rearrangements occur.

Chapter 27-18
b.

A $[1,3]$ sigmatropic rearrangement requires photochemical conditions not thermal conditions, so 5 -methyl-1,3-cyclopentadiene cannot rearrange directly to its 2 -methyl isomer by a [1,3] shift.
27.46

27.47

27.48 Use the definitions found in Answer 27.1.

27.49

a.

b.

c.

d.

27.50
a.

b.

c.

d.

Chapter 27-20
27.51 The mechanism consists of sequential [3,3] sigmatropic rearrangements, followed by tautomerization.

27.52

27.53

27.54

27.55 The mechanism consists of a [4+2] cycloaddition, followed by intramolecular imine formation.

27.56

This bridged bicyclic system is cleaved.

Chapter 27-22
27.57

27.58 Conrotatory cyclization of \mathbf{Y} using four π bonds forms \mathbf{X}. Disrotatory ring closure of \mathbf{X} can occur in two ways - on the top face or bottom face of the eight-membered ring to form diastereomers.

27.59
a.

b.

or

Chapter 27-24
c.

Chapter 28 Carbohydrates

Chapter Review

Important terms

- Aldose A monosaccharide containing an aldehyde (28.2)
- Ketose A monosaccharide containing a ketone (28.2)
- D-Sugar A monosaccharide with the O bonded to the stereogenic center farthest from the carbonyl group drawn on the right in the Fischer projection (28.2C)
- Epimers Two diastereomers that differ in configuration around one stereogenic center only (28.3)
- Anomers Monosaccharides that differ in configuration at only the hemiacetal OH group (28.6)
- Glycoside An acetal derived from a monosaccharide hemiacetal (28.7)

Acyclic, Haworth, and 3-D representations for D-glucose (28.6)

Reactions of monosaccharides involving the hemiacetal

[1] Glycoside formation (28.7A)

- Only the hemiacetal OH reacts.
- A mixture of α and β glycosides forms.

[2] Glycoside hydrolysis (28.7B)

- A mixture of α and β anomers forms.

Chapter 28-2

Reactions of monosaccharides at the $\mathbf{O H}$ groups

[1] Ether formation (28.8)

- All OH groups react.
- The stereochemistry at all stereogenic centers is retained.

[2] Ester formation (28.8)

- All OH groups react.
- The stereochemistry at all stereogenic centers is retained.

Reactions of monosaccharides at the carbonyl group

[1] Oxidation of aldoses (28.9B)

[2] Reduction of aldoses to alditols (28.9A)

[3] Wohl degradation (28.10A)

- The C1-C2 bond is cleaved to shorten an aldose chain by one carbon.
- The stereochemistry at all other stereogenic centers is retained.
- Two epimers at C2 form the same product.

[4] Kiliani-Fischer synthesis (28.10B)

- One carbon is added to the aldehyde end of an aldose.
- Two epimers at C2 are formed.

Other reactions

[1] Hydrolysis of disaccharides (28.12)

A mixture of anomers is formed.

[2] Formation of N-glycosides (28.14B)

- Two anomers are formed.

Practice Test on Chapter Review

1. a. How are the following two representations related to each other?

A

B
2. \mathbf{A} and \mathbf{B} are anomers of each other.
3. \mathbf{A} and \mathbf{B} are epimers of each other.
4. \mathbf{A} and \mathbf{B} are diastereomers of each other.
5. Statements [1] and [2] are both true.
6. Statements [1], [2], and [3] are all true.
b. Which of the following statements is (are) true about monosaccharide \mathbf{C} ?

7. C is a D-sugar.
8. The β anomer is drawn.
9. \mathbf{C} is an aldohexose.
10. Statements [1] and [2] are both true.
11. Statements [1], [2], and [3] are all true.

Chapter 28-4
c. Which of the following are different representations for monosaccharide \mathbf{D} ?

D
1.

2.

4. Both [1] and [2] are representations for \mathbf{D}.
5. Compounds [1], [2], and [3] all represent D.
3.

d. Which aldoses give an optically active compound upon reaction with NaBH_{4} in $\mathrm{CH}_{3} \mathrm{OH}$?
1.

2.

3.

4. Both [1] and [2] give an optically active product.
5. Compounds [1], [2], and [3] all give optically active products.
2. Answer each question about monosaccharide \mathbf{D} as True (T) or False (F).

a. \mathbf{D} is a D-sugar.
b. \mathbf{D} is drawn as an α anomer.
c. \mathbf{D} is an aldohexose.
d. Reduction of \mathbf{D} with NaBH_{4} in $\mathrm{CH}_{3} \mathrm{OH}$ forms an optically inactive alditol.
e. Oxidation of \mathbf{D} with $\mathrm{Br}_{2}, \mathrm{H}_{2} \mathrm{O}$ forms an optically active aldonic acid.
f. Oxidation of \mathbf{D} with HNO_{3} forms an optically active aldaric acid.
g. C 2 has the R configuration.
h. Treatment of \mathbf{D} with $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{HCl}$ forms two products.
i. Treatment of \mathbf{D} with $\mathrm{Ag}_{2} \mathrm{O}$, and $\mathrm{CH}_{3} \mathrm{I}$ (excess) forms two products.
j. An epimer of \mathbf{D} at C 3 has an axial OH group.
3. Answer the following questions about the three monosaccharides $(\mathbf{A}-\mathbf{C})$ drawn below.

A

B

a. Draw the α anomer of \mathbf{A} in a Haworth projection.
b. Draw the β anomer of \mathbf{B} in a three-dimensional representation using a chair conformation.
c. Convert \mathbf{C} into the acyclic form of the monosaccharide using a Fischer projection.
d. What two aldoses yield \mathbf{A} in a Wohl degradation?
4. Draw the product of each reaction with the starting material D-xylose.

CHO				a. $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{HCl}$
$\mathrm{H}-\mathrm{OH}$	b. $\mathrm{NaBH}_{4}, \mathrm{CH}_{3} \mathrm{OH}$			
$\mathrm{HO}-\mathrm{H}$	c. $\mathrm{Br}_{2}, \mathrm{H}_{2} \mathrm{O}$			
$\mathrm{H}-\mathrm{OH}$	d. $[1] \mathrm{NaCN}, \mathrm{HCl} ;[2] \mathrm{H}_{2}, \mathrm{Pd}-\mathrm{BaSO}_{4} ;[3] \mathrm{H}_{3} \mathrm{O}^{+}$			
CH D-xylose	e. $\mathrm{Ac}_{2} \mathrm{O}$, pyridine			

Answers to Practice Test

1. a. 5
b. 5
c. 4
d. 1
2. a. T
3.

a.

b. F
c. T
d. F
e. T
f. T
g. F
h. T
i. F
j. T
b.

c.

d.

4.
a.

b.

c.

d.

e.

Answers to Problems

28.1 A ketose is a monosaccharide containing a ketone. An aldose is a monosaccharide containing an aldehyde. A monosaccharide is called: a triose if it has three C's; a tetrose if it has four C's; a pentose if it has five C's; a hexose if it has six C's, and so forth.

Chapter 28-6

28.2 Rotate and re-draw each molecule to place the horizontal bonds in front of the plane and the vertical bonds behind the plane. Then use a cross to represent the stereogenic center in a Fischer projection formula.
a.

c.

b.

d.

28.3 For each molecule:
[1] Convert the Fischer projection formula to a representation with wedges and dashes.
[2] Assign priorities (Section 5.6).
[3] Determine R or S in the usual manner. Reverse the answer if priority group [4] is oriented forward (on a wedge).
a.

b.

[1]

c.

28.5
Corer
28.6 A D sugar has the OH group on the stereogenic center farthest from the carbonyl on the right. An L sugar has the OH group on the stereogenic center farthest from the carbonyl on the left.

A
OH group on the left: L sugar

B
OH group on the left: L sugar

C
OH group on the right: D sugar
b. \mathbf{A} and \mathbf{B} are diastereomers.
A and \mathbf{C} are enantiomers.
B and \mathbf{C} are diastereomers.
28.7 There are 32 aldoheptoses; 16 are D sugars.
C2 R

Chapter 28-8
28.8 Epimers are two diastereomers that differ in the configuration around only one stereogenic center.

28.9 a. D-allose and L-allose: enantiomers
b. D-altrose and D-gulose: diastereomers but not epimers
c. D-galactose and D-talose: epimers
d. D-mannose and D-fructose: constitutional isomers
e. D-fructose and D-sorbose: diastereomers but not epimers
f. L-sorbose and L-tagatose: epimers

28.10

a.

D-fructose

L-fructose
enantiomers
b.

c.

28.11

28.12 Step [1]: Place the O atom in the upper right corner of a hexagon, and add the $\mathrm{CH}_{2} \mathrm{OH}$ group on the first carbon counterclockwise from the O atom.
Step [2]: Place the anomeric carbon on the first carbon clockwise from the O atom.
Step [3]: Add the substituents at the three remaining stereogenic centers, clockwise around the ring.
a. Draw the α anomer of:

$\mathrm{CH}_{2} \mathrm{OH} \quad \mathrm{OH}$ on right $=\mathrm{D}$ sugar
b. Draw the α anomer of:

L sugar, $\mathrm{CH}_{2} \mathrm{OH}$ is drawn down.
[2]

The α anomer has the OH and $\mathrm{CH}_{2} \mathrm{OH}$ trans. In an Lsugar, the OH must be drawn up.
arthest away C , OH on left
$=L$ sugar
c. Draw the β anomer of:

[2]

β anomer OH is up for a D sugar.
[3]

The first two substituents are
on the left so they are drawn up. The third is on the right, drawn down.
[3]

The first substituent is on the left so it is drawn up. The other two are on the right, drawn down.
28.13 To convert each Haworth projection into its acyclic form:
[1] Draw the C skeleton with the CHO on the top and the $\mathrm{CH}_{2} \mathrm{OH}$ on the bottom.
[2] Draw in the OH group farthest from the $\mathrm{C}=\mathrm{O}$.
A $\mathrm{CH}_{2} \mathrm{OH}$ group drawn up means a D sugar; a $\mathrm{CH}_{2} \mathrm{OH}$ group drawn down means an L sugar.
[3] Add the three other stereogenic centers, counterclockwise around the ring.
"Up" groups go on the left, and "down" groups go on the right.

[1]

[2]

[3]

D sugar
[2]

OH on left = Lsugar

Chapter 28-10
28.14 To convert a Haworth projection into a 3-D representation with a chair cyclohexane:
[1] Draw the pyranose ring as a chair with the O as an "up" atom.
[2] Add the substituents around the ring.
a.

[1]

[2]

b.

[1]

[2]

With so many axial groups, this is not the more stable conformation of this sugar.
28.15 Cyclization always forms a new stereogenic center at the anomeric carbon, so two different anomers are possible.

Two anomers of D-erythrose:

28.16

β-D-mannose
b.

C.

28.17

28.18

a. All circled O atoms are part of a glycoside.

b. Hydrolysis of rebaudioside A breaks each bond indicated with a dashed line and forms four molecules of glucose and the aglycon drawn.

Both anomers of glucose are formed, but only the β anomer is drawn.

Chapter 28-12
28.19
a.

b.

c.

d.

e.

$+$

f. product in (c) $+\mathrm{C}_{6} \mathrm{H}_{5}^{-{ }^{\text {II }}}{ }_{-}^{\mathrm{O}} \mathrm{Cl} \xrightarrow[\text { pyridine }]{ }$

28.20

28.21 Carbohydrates containing a hemiacetal are in equilibrium with an acyclic aldehyde, making them reducing sugars. Glycosides are acetals, so they are not in equilibrium with any acyclic aldehyde, making them nonreducing sugars.
a.

b.

nonreducing sugar
c.

28.22
a.

c.

b.

28.23 Molecules with a plane of symmetry are optically inactive.
a.
 D-erythrose

b.

optically inactive
c.

28.24

28.25

a.

b.

D-ribose

$+$

Chapter 28-14

28.26

Possible optically inactive D-aldaric acids:

There are two possible structures for the \mathbf{D}-aldopentose (\mathbf{A}^{\prime} and $\mathbf{A}^{\prime \prime}$), and the Wohl degradation determines which structure corresponds to \mathbf{A}.

28.27

28.28

$$
\text { Optically inactive alditols formed from } \mathrm{NaBH}_{4} \text { reduction of a D-aldohexose. }
$$

Two D-aldohexoses (\mathbf{A}^{\prime} and $\mathbf{A}^{\prime \prime}$) give optically inactive alditols on reduction. $\mathbf{A}^{\prime \prime}$ is formed from $\mathbf{B}^{\prime \prime}$ by Kiliani-Fischer synthesis. Since $\mathbf{B}^{\prime \prime}$ affords an optically active aldaric acid on oxidation, $\mathbf{B}^{\prime \prime}$ is \mathbf{B} and $\mathbf{A}^{\prime \prime}$ is \mathbf{A}. The alternate possibility $\left(\mathbf{A}^{\prime}\right)$ is formed from an aldopentose \mathbf{B}^{\prime} that gives an optically inactive aldaric acid on oxidation.
28.29

28.30

Chapter 28-16

28.31

28.32

28.33
a.

b.

28.34

28.35
a.

b.

28.36

a. Two purine bases (A and G) are both bicyclic bases. Therefore they are too big to hydrogen bond to each other on the inside of the DNA double helix.
b. Hydrogen bonding between guanine and cytosine has three hydrogen bonds, whereas between guanine and thymine there are only two. This makes hydrogen bonding between guanine and cytosine more favorable.

Chapter 28-18
28.37

28.38

28.39 Label the compounds with R or S and then classify.

A
a.

b.

c.

d.

28.40 Use the directions from Answer 28.2 to draw each Fischer projection.

28.41 Epimers are two diastereomers that differ in the configuration around only one stereogenic center.

L-arabinose
28.42
a.

enantiomer

epimer
c.

diastereomer (but not epimer)
d.

constitutional isomer
28.43

a. \mathbf{A} and \mathbf{B} epimers
b. \mathbf{A} and \mathbf{C} diastereomers

C
c. B and C enantiomers
d. \mathbf{A} and \mathbf{D} constitutional isomers

E

28.44

A

B
a. anomers, epimers, diastereomers, reducing sugars
b.

Chapter 28-20
28.45 Use the directions from Answer 28.12.
a. β-D-talopyranose

[1]

D sugar, $\mathrm{CH}_{2} \mathrm{OH}$ is drawn up.
[2]

β anomer OH is up for a D sugar.
[3]

[2]

β anomer OH is up for a D sugar.
[3]

b. β-D-mannopyranose

[1]

[2]

$$
\mathrm{OH} \text { is down. }
$$

[3]

c. α-D-galactopyranose

D-galactose
[1]

D sugar, $\mathrm{CH}_{2} \mathrm{OH}$ is drawn up.

$$
\begin{aligned}
& \text { farthest away C, } \\
& \text { OH on right = D sugar }
\end{aligned}
$$

[2]

α anomer
OH is down.
[3]

[1]

D sugar, $\mathrm{CH}_{2} \mathrm{OH}$ is drawn up.
〔 farthest away C, OH on right $=\mathrm{D}$ sugar
D-ribose
e. α-D-tagatofuranose

[2]

α anomer
OH is down.
[3]

28.46

a.

farthest away C ,
OH on right = D sugar
b.

farthest away C ,
OH on right $=\mathrm{D}$ sugar
c.

 β anomer
farthest away C,

OH on right $=\mathrm{D}$ sugar
28.47 Use the directions from Answer 28.13.
"up" group
on left
a.
[1]

[2]

OH on right $=$ D sugar
[3]

[1]

[2]

[3]

Chapter 28-22
c.

[2]

3]

d.

D sugar
e.

28.48

D-arabinose
a.

α anomer
b.

28.49

Two anomers of D-idose, as well as two conformations of each anomer:

More stable conformation for the α anomer-the $\mathrm{CH}_{2} \mathrm{OH}$ is axial, but all other groups are equatorial.

3 axial substituents

3 equatorial OH groups
The more stable conformation for the β anomer-the $\mathrm{CH}_{2} \mathrm{OH}$ is axial, as is the anomeric OH , but three other OH groups are equatorial.

28.50

28.51

a. $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{HC}$

d. $\mathrm{Br}_{2}, \mathrm{H}_{2} \mathrm{O}$
e. $\mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{O}$

Chapter 28-24
f. [1] $\mathrm{NH}_{2} \mathrm{OH}$
[2] $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}, \mathrm{NaOCOCH}_{3}$ [3] NaOCH_{3}

h. $\mathrm{CH}_{3} \mathrm{I}, \mathrm{Ag}_{2} \mathrm{O}$

i. $\mathrm{Ac}_{2} \mathrm{O}$, pyridine

j. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NH}_{2}$, mild $\mathrm{H}^{+} \mathrm{OH}_{\mathrm{OH}}$

28.52

28.53

28.54
a.

b.

c.

28.55

b.

c.

28.56 Molecules with a plane of symmetry are optically inactive.

28.57

a.

Chapter 28-26
b.

c.

28.58

28.59

28.60

в HO

28.61

Chapter 28-28
28.62

28.63

Two D-aldopentoses (\mathbf{A}^{\prime} and $\mathbf{A}^{\prime \prime}$) yield optically active aldaric acids when oxidized.
Optically active D-aldaric acids:

[O]

optically active

Only $\mathbf{A}^{\prime \prime}$ undergoes Wohl degradation to an aldotetrose that is oxidized to an optically active aldaric acid, so $\mathbf{A}^{\prime \prime}$ is the structure of the D -aldopentose in question.

28.64

28.65

Only two D-aldopentoses (A^{\prime} and $A^{\prime \prime}$) yield optically inactive aldaric acids (\mathbf{B}^{\prime} and $\mathbf{B}^{\prime \prime}$).

Chapter 28-30

Only \mathbf{A}^{\prime} fits the criteria. Kiliani-Fischer synthesis of \mathbf{A}^{\prime} forms \mathbf{C}^{\prime} and \mathbf{D}^{\prime}, which are oxidized to one optically active and one optically inactive aldaric acid. A similar procedure with $\mathbf{A}^{\prime \prime}$ forms two optically active aldaric acids. Thus, the structures of A-D correspond to the structures of $\mathbf{A}^{\prime}-\mathbf{D}^{\prime}$.

28.66

Only two D-aldopentoses (\mathbf{A}^{\prime} and $\mathbf{A}^{\prime \prime}$) are reduced to optically active alditols.

Only $\mathbf{A}^{\prime \prime}$ fits the criteria. Kiliani-Fischer synthesis of $\mathbf{A}^{\prime \prime}$ forms $\mathbf{B}^{\prime \prime}$ and $\mathbf{C}^{\prime \prime}$, which are oxidized to one optically inactive and one optically active diacid. A similar procedure with \mathbf{A}^{\prime} forms two optically active diacids. Thus, the structures of $\mathbf{A}-\mathbf{C}$ correspond to $\mathbf{A}^{\prime \prime}-\mathbf{C}^{\prime \prime}$.

28.67

A

B

C

D

E

F

G
28.68 A disaccharide formed from two galactose units in a $1 \rightarrow 4-\beta$-glycosidic linkage:

28.69 A disaccharide formed from two mannose units in a $1 \rightarrow 4-\alpha$-glycosidic linkage:
α glycoside bond

28.70
a.

b.

(Both anomers of \mathbf{E} and \mathbf{F} are formed, but only one is drawn.)

28.71

a.

Chapter 28-32
28.72
a, b.

c.

Two anomers of each monosaccharide are formed, but only one anomer is drawn.
d. Stachyose is not a reducing sugar since it contains no hemiacetal.

$\xrightarrow[\mathrm{Ag}_{2} \mathrm{O}]{\mathrm{CH}_{3} \mathrm{I}}$

28.74

Trehalose must be composed of D-glucose units only, joined in an α-glycosidic linkage. Since trehalose is nonreducing it contains no hemiacetal. Since there is only one product formed after methylation and hydrolysis, the two anomeric C's must be joined.

28.75

a.

b.

c.

d.

Chapter 28-34
28.76
a.

more stable chair

c. Fucose is unusual because it is an L-monosaccharide and it contains a CH_{3} group rather than a $\mathrm{CH}_{2} \mathrm{OH}$ group on its terminal carbon.
28.77
a.

b.

D-fructose

L-glucose
28.78

Ignoring stereochemistry along the way:

[5]

[11]

Chapter 28-36
28.79 The hydrolysis data suggest that the trisaccharide has D-galactose on one end and D-fructose on the other. D-Galactose must be joined to its adjacent sugar by a β-glycosidic linkage. D-Fructose must be joined to its adjacent sugar by an α-glycosidic linkage.

Chapter 29 Amino Acids and Proteins

Chapter Review

Synthesis of amino acids (29.2)

[1] From α-halo carboxylic acids by $S_{N} 2$ reaction

[2] By alkylation of diethyl acetamidomalonate

- Alkylation works best with unhindered alkyl halides-that is, with $\mathrm{CH}_{3} \mathrm{X}$ and $\mathrm{RCH}_{2} \mathrm{X}$.

[3] Strecker synthesis

Preparation of optically active amino acids

[1] Resolution of enantiomers by forming diastereomers (29.3A)

- Convert a racemic mixture of amino acids into a racemic mixture of N -acetyl amino acids $\left[(S)-\right.$ and $\left.(R)-\mathrm{CH}_{3} \mathrm{CONHCH}(\mathrm{R}) \mathrm{COOH}\right]$.
- React the enantiomers with a chiral amine to form a mixture of diastereomers.
- Separate the diastereomers.
- Regenerate the amino acids by protonation of the carboxylate salt and hydrolysis of the N -acetyl group.

[2] Kinetic resolution using enzymes (29.3B)

[3] By enantioselective hydrogenation (29.4)

Summary of methods used for peptide sequencing (29.6)

- Complete hydrolysis of all amide bonds in a peptide gives the identity and amount of the individual amino acids.
- Edman degradation identifies the N-terminal amino acid. Repeated Edman degradations can be used to sequence a peptide from the N -terminal end.
- Cleavage with carboxypeptidase identifies the C-terminal amino acid.
- Partial hydrolysis of a peptide forms smaller fragments that can be sequenced. Amino acid sequences common to smaller fragments can be used to determine the sequence of the complete peptide.
- Selective cleavage of a peptide occurs with trypsin and chymotrypsin to identify the location of specific amino acids (Table 29.2).

Adding and removing protecting groups for amino acids (29.7)

[1] Protection of an amino group as a Boc derivative

[2] Deprotection of a Boc-protected amino acid

[3] Protection of an amino group as an Fmoc derivative

[4] Deprotection of an Fmoc-protected amino acid

[5] Protection of a carboxy group as an ester

[6] Deprotection of an ester group

Synthesis of dipeptides (29.7)

[1] Amide formation with DCC

[2] Four steps are needed to synthesize a dipeptide:
a. Protect the amino group of one amino acid using a Boc or Fmoc group.
b. Protect the carboxy group of the second amino acid using an ester.
c. Form the amide bond with DCC.
d. Remove both protecting groups in one or two reactions.

Summary of the Merrifield method of peptide synthesis (29.8)

[1] Attach an Fmoc-protected amino acid to a polymer derived from polystyrene.
[2] Remove the Fmoc protecting group.
[3] Form the amide bond with a second Fmoc-protected amino acid using DCC.
[4] Repeat steps [2] and [3].
[5] Remove the protecting group and detach the peptide from the polymer.

Practice Test on Chapter Review

1. a Which statement is true about the peptide Ala-Gly-Tyr-Phe?
2. The N-terminal amino acid is Ala.
3. The N-terminal amino acid is Phe.
4. The peptide contains four peptide bonds.
5. Statements [1] and [3] are true.
6. Statements [2] and [3] are true.
b. Which of the following peptides is hydrolyzed by trypsin?
7. Glu-Ser-Gly-Arg
8. Arg-Gln-Trp-Asp
9. Glu-Val-Leu-Lys
10. Peptides [1] and [2] are hydrolyzed.
11. Peptides [1], [2], and [3] are all hydrolyzed.
c. In which types of protein structure is hydrogen bonding observed?
12. α-helix
13. β-pleated sheet
14. 3° structure
15. Hydrogen bonding is present in [1] and [2].
16. Hydrogen bonding is present in [1], [2], and [3].
17. Answer the following questions about peptides.

a. Draw the structure of the following tripeptide: Val-Ser-Ala.
b. Give the three-letter abbreviation for the N-terminal amino acid.
c. Give the three-letter abbreviation for the C-terminal amino acid.
18. Answer the following questions about the amino acid leucine (2-amino-4-methylpentanoic acid), which has $\mathrm{p} K_{\mathrm{a}}$'s of 2.33 and 9.74 for its ionizable functional groups.
a. Draw a Fischer projection for L-leucine and label the stereogenic center as R or S.
b. What is the $\mathrm{p} I$ of leucine?
c. Draw the structure of the predominant form of leucine at its isoelectric point.
d. Draw the structure of the predominant form of leucine at pH 10 .
e. Is leucine an acidic, basic, or neutral amino acid?
19. What product is formed when the amino acid phenylalanine is treated with each reagent?
a. $\mathrm{PhCH}_{2} \mathrm{OH}, \mathrm{H}^{+}$
b. $\mathrm{Ac}_{2} \mathrm{O}$, pyridine
c. PhCOCl , pyridine
d. $(\mathrm{Boc})_{2} \mathrm{O}$
e. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}=\mathrm{C}=\mathrm{S}$
20. Draw the amino acids and peptide fragments formed when the octapeptide Tyr-Gly-Ala-Lys-Val-Ser-Phe-Met is treated with each reagent or enzyme:
a. chymotrypsin
b. trypsin
c. carboxypeptidase
d. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}=\mathrm{C}=\mathrm{S}$

Answers to Practice Test

Answers to Problems

29.1

L-isoleucine

Chapter 29-6
29.2

c.

d.

29.3 In an amino acid, the electron-withdrawing carboxy group destabilizes the ammonium ion $\left(-\mathrm{NH}_{3}{ }^{+}\right)$, making it more readily donate a proton; that is, it makes it a stronger acid. Also, the electron-withdrawing carboxy group removes electron density from the amino group $\left(-\mathrm{NH}_{2}\right)$ of the conjugate base, making it a weaker base than a 1° amine, which has no electron-withdrawing group.
29.4 The most direct way to synthesize an α-amino acid is by $\mathbf{S}_{\mathbf{N}} \mathbf{2}$ reaction of an α-halo carboxylic acid with a large excess of $\mathbf{N H}_{3}$.
a.

b.

isoleucine

29.5

29.6

29.7

29.8
a. $\mathrm{BrCH}_{2} \mathrm{COOH} \xrightarrow[\text { large excess }]{\mathrm{NH}_{3}} \mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{-} \mathrm{NH}_{4}{ }^{+}$
c. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CHO} \xrightarrow[{\text { [2] } \mathrm{H}_{3} \mathrm{O}^{+}}]{\text {[1] } \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NaCN}} \xrightarrow[\substack{\text { CH }}]{\mathrm{H}_{2} \mathrm{~N}-\mathrm{CHCOOH}}$
2] $\mathrm{H}_{3} \mathrm{O}^{+} \xrightarrow{\stackrel{1}{\mathrm{C}} \mathrm{H}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}}$

[3] $\mathrm{H}_{3} \mathrm{O}^{+}, \Delta$
d. $\mathrm{CH}_{3} \mathrm{CONH}-\stackrel{\substack{\mathrm{C} \\ \stackrel{1}{\mathrm{C}}-\mathrm{COOEt} \\ \mathrm{COOEt}}}{\substack{\mathrm{C} \\ \hline}}$

29.9 A chiral amine must be used to resolve a racemic mixture of amino acids.
a. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ achiral
b.

c.

d.

chiral (can be used)
29.10

Step [1]:
React both enantiomers with the
R isomer of the chiral amine.

These salts have the same configuration around one stereogenic center, but the opposite configuration about the other stereogenic center.

Chapter 29-8

29.11

29.12

b.

c.

29.13 Draw the peptide by joining adjacent COOH and NH_{2} groups in amide bonds.
a.

b.

His

c.

29.14
a.

b.

29.15 There are six different tripeptides that can be formed from three amino acids (A, B, C) : $\mathrm{A}-\mathrm{B}-\mathrm{C}, \mathrm{A}-\mathrm{C}-\mathrm{B}, \mathrm{B}-\mathrm{A}-\mathrm{C}, \mathrm{B}-\mathrm{C}-\mathrm{A}, \mathrm{C}-\mathrm{A}-\mathrm{B}$, and $\mathrm{C}-\mathrm{B}-\mathrm{A}$.
29.16

29.17

29.18
a.

b.

29.19 Determine the sequence of the octapeptide as in Sample Problem 29.2. Look for overlapping sequences in the fragments.

29.20 Trypsin cleaves peptides at amide bonds with a carbonyl group from Arg and Lys. Chymotrypsin cleaves at amide bonds with a carbonyl group from Phe, Tyr, and Trp.
a. [1] Gly-Ala-Phe-Leu-Lys + Ala
[2] Phe-Tyr-Gly-Cys-Arg + Ser
[3] Thr-Pro-Lys + Glu-His-Gly-Phe-Cys-Trp-Val-Val-Phe
b. [1] Gly-Ala-Phe + Leu-Lys-Ala
[2] Phe + Tyr + Gly-Cys-Arg-Ser
[3] Thr-Pro-Lys-Glu-His-Gly-Phe + Cys-Trp + Val-Val-Phe
29.21

Cleavage by trypsin is after Arg and yields a dipeptide; therefore, this must be the peptide: \longrightarrow Leu-Gly-Ala-Ser-Arg-Phe-Glu

29.22

a.
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{H}$

Chapter 29-12

C

Ala-Ile-Gly

Chapter 29-14
29.23 The dipeptide depicted in the 3-D model has alanine as the N -terminal amino acid and cysteine as the C -terminal amino acid.

29.24

All Fmoc-protected amino acids are made by the following general reaction:

29.25 In a parallel β-pleated sheet, the strands run in the same direction from the N - to C -terminal amino acid. In an antiparallel β-pleated sheet, the strands run in the opposite direction.

29.26
a. Ser and Tyr

hydrogen bonding
b. Val and Leu

c. 2 Phe residues

van der Waals forces
29.27 a. The R group for glycine is a hydrogen. The R groups must be small to allow the β-pleated sheets to stack on top of each other. With large R groups, steric hindrance prevents stacking.
b. Silk fibers are water insoluble because most of the polar functional groups are in the interior of the stacked sheets. The β-pleated sheets are stacked one on top of another, so few polar functional groups are available for hydrogen bonding to water.
29.28

a.

phenylalanine

d. NaOH (1 equiv)

e. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}=\mathrm{C}=\mathrm{S}$

29.29
a. N -terminal amino acid: alanine C-terminal amino acid: serine b. $\mathrm{A}-\mathrm{Q}-\mathrm{C}-\mathrm{S}$
c. Amide bonds are bold.

29.30 The dipeptide is composed of phenylalanine and leucine.

29.31
a.

(S)-penicillamine
b.

29.32 Amino acids are insoluble in diethyl ether because amino acids are highly polar; they exist as salts in their neutral form. Diethyl ether is weakly polar, so amino acids are not soluble in it. N -Acetyl amino acids are soluble because they are polar but not salts.

amino acid, a salt
$\mathrm{H}_{2} \mathrm{O}$ soluble and ether insoluble

N -acetyl amino acid ether soluble
29.33 The electron pair on the N atom not part of a double bond is delocalized on the fivemembered ring, making it less basic.

Chapter 29-18
29.34

The ring structure on tryptophan is aromatic since each atom contains a p orbital. Protonation of the N atom would disrupt the aromaticity, making this a less favorable reaction.

This electron pair is delocalized on the bicyclic ring system (giving it 10π electrons), making it less available for donation, and thus less basic.
29.35 At its isoelectric point, each amino acid is neutral.
a.

b.

c.

aspartic acid
d.

29.36
a. [1] glutamic acid: use the $\mathrm{p} K_{\mathrm{a}}{ }^{\text {'s }} 2.10+4.07$
[2] lysine: use the $\mathrm{p} K_{\mathrm{a}}$'s $8.95+10.53$
[3] arginine: use the $\mathrm{p} K_{\mathrm{a}}$'s $9.04+12.48$
b. In general, the $\mathrm{p} I$ of an acidic amino acid is lower than that of a neutral amino acid.
c. In general, the $\mathrm{p} I$ of a basic amino acid is higher than that of a neutral amino acid.
29.37

a. threonine $\mathrm{p} I=5.06$	b. methionine $\mathrm{p} I=5.74$	c. aspartic acid $\mathrm{pI}=2.98$	d. arginine $\mathrm{p} I=5.41$
$(+1)$ charge at $\mathrm{pH}=1$	$(+1)$ charge at $\mathrm{pH}=1$	$(+1)$ charge at $\mathrm{pH}=1$	(+2) charge at $\mathrm{pH}=1$
$\mathrm{H}_{3} \stackrel{+}{\mathrm{N}}-\underset{1}{\mathrm{C}} \mathrm{H}-\mathrm{COOH}$	$\mathrm{H}_{3} \stackrel{+}{\mathrm{N}}-\underset{1}{\mathrm{CH}}-\mathrm{COOH}$	$\mathrm{H}_{3} \stackrel{+}{\mathrm{N}}-\underset{1}{\mathrm{CH}}-\mathrm{COOH}$	$\mathrm{H}_{3} \stackrel{+}{\mathrm{N}}-\underset{1}{\mathrm{CH}}-\mathrm{COOH}$
$\stackrel{\mathrm{CH}}{ } \mathrm{O} \mathrm{OH}$	CH_{2}	CH_{2}	CH_{2}
CH_{3}	CH_{2}	COOH	CH_{2}
	S		CH_{2}
	CH_{3}		NH
			$\mathrm{C}=\mathrm{NH}_{2}$
			NH_{2}

29.38

29.39 The terminal NH_{2} and COOH groups are ionizable functional groups, so they can gain or lose protons in aqueous solution.

b. At $\mathrm{pH}=1$

c. The $\mathrm{p} K_{\mathrm{a}}$ of the COOH of the tripeptide is higher than the $\mathrm{p} K_{\mathrm{a}}$ of the COOH group of alanine, making it less acidic. This occurs because the COOH group in the tripeptide is farther away from the $-\mathrm{NH}_{3}{ }^{+}$group. The positively charged $-\mathrm{NH}_{3}{ }^{+}$group stabilizes the negatively charged carboxylate anion of alanine more than the carboxylate anion of the tripeptide because it is so much closer in alanine. The opposite effect is observed with the ionization of the $-\mathrm{NH}_{3}{ }^{+}$group. In alanine, the $-\mathrm{NH}_{3}{ }^{+}$is closer to the COO^{-}group, so it is more difficult to lose a proton, resulting in a higher $\mathrm{p} K_{\mathrm{a}}$. In the tripeptide, the $-\mathrm{NH}_{3}{ }^{+}$is farther away from the COO^{-}, so it is less affected by its presence.

Chapter 29-20
29.40

d. $\xrightarrow{\mathrm{Ac}_{2} \mathrm{O} \text {, pyridine }}$

j. The product in (h), then $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{3}+\mathrm{DCC}$

e. HCl (1 equiv)

f. NaOH (1 equiv)

I. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}=\mathrm{C}=\mathrm{S}$

29.41

b. $\mathrm{CH}_{3} \mathrm{CONHCH}(\mathrm{COOEt})_{2} \xrightarrow[{\text { [2] } \mathrm{NaOEt}}]{\text { [1] }}$

[3] $\mathrm{H}_{3} \mathrm{O}^{+}, \Delta$
c.

d.

e. $\mathrm{CH}_{3} \mathrm{CONHCH}(\mathrm{COOEt})_{2}$

a. Asn

c. Trp

29.43

29.44
a. $\mathrm{CH}_{3} \mathrm{CHO} \xrightarrow[\mathrm{CH}_{3} \mathrm{COOH}]{\mathrm{Br}_{2}} \mathrm{BrCH}_{2} \mathrm{CHO} \xrightarrow[\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O}]{\mathrm{CrO}_{3}} \mathrm{BrCH}_{2} \mathrm{COOH} \xrightarrow[\text { excess }]{\mathrm{NH}_{3}} \xrightarrow[\begin{array}{c}\text { glycine }\end{array}]{+\mathrm{H}_{3} \mathrm{NCH}_{2} \mathrm{COO}^{-}}$
b.

29.45

Chapter 29-22
29.46

29.47

29.48

Chapter 29-24
29.49

To begin:
Convert the amino acids into amino acid esters (two enantiomers).

(R)-mandelic acid

These salts have the same configuration around one stereogenic center, but the opposite configuration about the other stereogenic center.

Step [2]:
Separate the diastereomers.

Step [3]:
Regenerate the amino acids by hydrolysis of the esters.

iastereomers

Chapter 29-26
29.51

29.52

29.53
a.

Phe-Ala
c.

b.

d.

29.54 Amide bonds are bold lines (not wedges).

29.55 Name a peptide from the N -terminal to the C-terminal end.
a.

Gly-Asp-Glu

29.56 A peptide $\mathrm{C}-\mathrm{N}$ bond is stronger than an ester $\mathrm{C}-\mathrm{O}$ bond because the $\mathrm{C}-\mathrm{N}$ bond has more double bond character due to resonance. Since N is more basic than O , an amide $\mathrm{C}-\mathrm{N}$ bond is more stabilized by delocalization of the lone pair on N .

29.57

29.58
a. $\mathrm{A}-\mathrm{P}-\mathrm{F}+\mathrm{L}-\mathrm{K}-\mathrm{W}+\mathrm{S}-\mathrm{G}-\mathrm{R}-\mathrm{G}$
b. A-P-F-L-K $+\mathrm{W}-\mathrm{S}-\mathrm{G}-\mathrm{R}+\mathrm{G}$
c. A-P-F-L-K-W-S-G-R + G
d. $\mathrm{A}+\mathrm{P}-\mathrm{F}-\mathrm{L}-\mathrm{K}-\mathrm{W}-\mathrm{S}-\mathrm{G}-\mathrm{R}-\mathrm{G}$
29.59
a.
common amino acids

b.
common amino acids

Chapter 29-28
29.60

29.61 Gly is the N-terminal amino acid (from Edman degradation), and Leu is the C-terminal amino acid (from treatment with carboxypeptidase). Partial hydrolysis gives the rest of the sequence.

29.62 Edman degradation data give the N -terminal amino acid for the octapeptide and all smaller peptides.

29.63 A and \mathbf{B} can react to form an amide, or two molecules of \mathbf{B} can form an amide.

29.64
a.

b.

d. product in (b) + product in (c)

e.

29.65
a.

Gly-Ala

Chapter 29-30

29.66 Make all the Fmoc derivatives as described in Problem 29.24.

Chapter 29-32

29.67
a. A p-nitrophenyl ester activates the carboxy group of the first amino acid to amide formation by converting the OH group into a good leaving group, the p-nitrophenoxide group, which is highly resonance stabilized. In this case the electron-withdrawing NO_{2} group further stabilizes the leaving group.

The negative charge is delocalized on the O atom of the NO_{2} group.
b. The p-methoxyphenyl ester contains an electron-donating OCH_{3} group, making $\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{O}^{-}$a poorer leaving group than $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}^{-}$, so this ester does not activate the amino acid to amide formation as much.
29.68
a.

b.

Fmoc-protected amino acid

29.69 Reaction of the OH groups of the Wang resin with the COOH group of the Fmoc-protected amino acids would form esters by Fischer esterification. After the peptide has been synthesized, the esters can be hydrolyzed with aqueous acid or base, but the conditions cannot be too harsh to break the amide bond or cause epimerization.

Chapter 29-34

29.70 Amino acids commonly found in the interior of a globular protein have nonpolar or weakly polar side chains: isoleucine and phenylalanine. Amino acids commonly found on the surface have $\mathrm{COOH}, \mathrm{NH}_{2}$, and other groups that can hydrogen bond to water: aspartic acid, lysine, arginine, and glutamic acid.
29.71 The proline residues on collagen are hydroxylated to increase hydrogen bonding interactions.

[O]

The new OH group allows more hydrogen bonding interactions between the chains of the triple helix, thus stabilizing it.
29.72

29.73 Perhaps using a chiral amine $\mathrm{R} * \mathrm{NH}_{2}$ (or related chiral nitrogen-containing compound) to make a chiral imine, will now favor formation of one of the amino nitriles in the Strecker synthesis. Hydrolysis of the CN group and removal of R^{*} would then form the amino acid.

29.74 This reaction is similar to the reaction of penicillin with the glycopeptide transpeptidase enzyme discussed in Section 22.14. Serine has a nucleophilic OH, which can open the strained β-lactone to form a covalently bound, inactive enzyme.

Chapter 29-36

29.75

Chapter 30 Lipids

Chapter Review

Hydrolyzable lipids

[1] Waxes (30.2)-Esters formed from a long-chain alcohol and a long-chain carboxylic acid

$$
\mathrm{R}^{\text {III }_{-}^{\mathrm{C}}{ }_{-O R}} \quad \mathrm{R}, \mathrm{R}^{\prime}=\text { long chains of } \mathrm{C}^{\prime} \mathrm{s}
$$

[2] Triacylglycerols (30.3)—Triesters of glycerol with three fatty acids

$R, R^{\prime}, R^{\prime \prime}=$ alkyl groups with 11-19 C's

[3] Phospholipids (30.4)

[a] Phosphatidylethanolamine (cephalin)
[b] Phosphatidylcholine (lecithin)

$R, R^{\prime}=$ long carbon chain

$\mathrm{R}, \mathrm{R}^{\prime}=$ long carbon chain
[c] Sphingomyelin

$\mathrm{R}=$ long carbon chain
$\mathrm{R}^{\prime}=\mathrm{H}$ or CH_{3}

Nonhydrolyzable lipids

[1] Fat-soluble vitamins (30.5)—Vitamins A, D, E, and K
[2] Eicosanoids (30.6)-Compounds containing 20 carbons derived from arachidonic acid. There are four types: prostaglandins, thromboxanes, prostacyclins, and leukotrienes.
[3] Terpenes (30.7)—Lipids composed of repeating five-carbon units called isoprene units

Isoprene unit	Types of terpenes			
$c_{c^{\prime}}^{c^{\prime}-c_{c}^{c}}$	[1] monoterpene	10 C's	[4] sesterterpene	25 C's
	[2] sesquiterpene	15 C 's	[5] triterpene	30 C 's
	[3] diterpene	20 C's	[6] tetraterpene	40 C's

[4] Steroids (30.8)-Tetracyclic lipids composed of three six-membered and one five-membered ring

Practice Test on Chapter Review

1. a. Which of the following compounds contains an ester?
2. a wax
3. a cephalin
4. a sphingomyelin
5. Both [1] and [2] contain esters.
6. Compounds [1], [2], and [3] all contain esters.
b. Which of the following compounds is an eicosanoid?
7. a leukotriene
8. a thromboxane
9. a prostaglandin
10. Both [1] and [2] are eicosanoids.
11. Compounds [1], [2], and [3] are all eicosanoids.
c. Which of the following statements is (are) true about \mathbf{A} ?

12. \mathbf{A} is a lecithin.
13. \mathbf{A} is a phosphoacylglycerol.
14. A has two tetrahedral stereogenic centers.
15. Both [1] and [2] are true.
16. Statements [1], [2], and [3] are all true.
17. Label each compound as a (1) hydrolyzable or (2) nonhydrolyzable lipid.
a. a triacylglycerol
e. oleic acid
b. vitamin A
f. PGE_{1}
c. cholesterol
g. a wax
d. a lecithin
h. a phosphoacylglycerol
18. For each compound: How many isoprene units does the compound contain? Classify the compound as a monoterpene, sesquiterpenoid, etc.

A

B

C
19. Answer True (T) or False (F) for each statement.
a. Eicosanoids are biosynthesized from dimethylallyl diphosphate and isopentenyl diphosphate.
b. Prostaglandins are biosynthesized from arachidonic acid.
c. Fats have lower melting points than oils, and are generally solids at room temperature.
d. A cephalin is one type of phosphoacylglycerol.
e. Sphingomyelins possess a polar head and two nonpolar tails.
f. A sesterterpene contains six isoprene units.
g. The typical steroid skeleton has four six-membered rings joined with trans ring fusions.
h. Waxes are high molecular weight lipids formed from a fatty acid and a long-chain amine.
20. Which terms describe each compound: (a) hydrolyzable lipid; (b) triacylglycerol;
(c) phosphoacylglycerol; (d) phospholipid; (e) nonhydrolyzable lipid; (f) prostaglandin;
(g) terpenoid? More than one term may apply to a compound.

C

Answers to Practice Test

1. a. 4
b. 5
2. a. 1
3. A: 2, monoterpenoid

B: 4, diterpenoid
c. 3

C: 3, sesquiterpenoid
d. 1
e. 2
f. 2
g. 1
h. 1
4. a. F
b. T
5. A: e, f
b. T

B: e, g
c. F

C: a, c, d
d. T
e. T
f. F
g. F
h. F

Chapter 30-4

Answers to Problems

30.1 Join the carboxylic acid and alcohol together to form an ester.

30.2 Eicosapentaenoic acid has 20 C 's and $5 \mathrm{C}=\mathrm{C}$'s. Since an increasing number of double bonds decreases the melting point, eicosapentaenoic acid should have a melting point lower than arachidonic acid; that is, $<-49^{\circ} \mathrm{C}$.

30.3

30.4

lauric acid

Lauric acid is a saturated fatty acid but has only 12 C 's. The carbon chain is much shorter than palmitic acid (16 C 's) and stearic acid (18 C's), making coconut oil a liquid at room temperature.

30.5

30.6 A lecithin is a type of phosphoacylglycerol. Two of the hydroxy groups of glycerol are esterified with fatty acids. The third OH group is part of a phosphodiester, which is also bonded to another low molecular weight alcohol.

30.7 Soaps and phosphoacylglycerols have hydrophilic and hydrophobic components. Both compounds have an ionic "head" that is attracted to polar solvents like $\mathrm{H}_{2} \mathrm{O}$. This head is small in size compared to the hydrophobic region, which consists of one or two long hydrocarbon chains. These nonpolar chains consist of only $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$ bonds and exhibit only van der Waals forces.

30.8 Phospholipids have a polar (ionic) head and two nonpolar tails. These two regions, which exhibit very different forces of attraction, allow the phospholipids to form a bilayer with a central hydrophobic region that serves as a barrier to agents crossing a cell membrane, while still possessing an ionic head to interact with the aqueous environment inside and outside the cell. Two different regions are needed in the molecule. Triacylglycerols have three polar, uncharged ester groups, but they are not nearly as polar as phospholipids. They do not have an ionic head with nonpolar tails and so they do not form bilayers. They are largely nonpolar $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$ bonds so they are not attracted to an aqueous medium, making them $\mathrm{H}_{2} \mathrm{O}$ insoluble.

Chapter 30-6
30.9 Fat-soluble vitamins are hydrophobic and therefore are readily stored in the fatty tissues of the body. Water-soluble vitamins, on the other hand, are readily excreted in the urine, so large concentrations cannot build up in the body.
30.10

Only one tetrahedral stereogenic center is different in these two compounds.
30.11 Isoprene units are shown in bold.
a.

c.
 grandisol
b.

d.

30.12

30.13

30.14

30.15

30.16

Chapter 30-8
30.17

30.18

All four rings are in the same plane. The bulky CH_{3} groups (arrows) are located above the plane. Epoxide \mathbf{A} is favored, because it results from epoxidation below the plane, on the opposite side from the CH_{3} groups that shield the top of the molecule somewhat to attack by reagents. In \mathbf{B}, the epoxide ring is above the plane on the same side as the CH_{3} groups.
Formation of \mathbf{B} would require epoxidation of the planar $\mathrm{C}=\mathrm{C}$ from the less accessible, more sterically hindered side of the double bond. This path is thus disfavored.
30.19
a.

b.

30.20
a.

trans
b.

cis
a.

b.

30.22

30.23 Each compound has one tetrahedral stereogenic center (circled), so there are two stereoisomers (two enantiomers) possible. All $\mathrm{C}=\mathrm{C}$'s have the Z configuration.

30.24

Chapter 30-10

30.25

30.26 When $\mathrm{R}^{\prime \prime}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}$, the compound is called a phosphatidylethanolamine or cephalin.
a.

cephalin
b.

sphingomyelin
30.27
a. HO

b.

Use a chiral reducing agent to add hydride from one side only to form a single diastereomer.

a.

b.

carvone
e.

patchouli alcohol
f.

g.

c.

d.

30.29 A monoterpene contains 10 carbons and two isoprene units; a sesquiterpene contains 15 carbons and three isoprene units, etc. See Table 30.5.
a.

b.

monoterpenoid
e.

g.

f.

h.

c.

d.

Chapter 30-12
30.30

squalene

30.31
 carbocation
30.32 The unusual feature in the cyclization that forms flexibilene is that a 2° carbocation rather than a 3° carbocation is generated. Cyclization at the other end of the $\mathrm{C}=\mathrm{C}$ would have given a 3° carbocation and formed a 14 -membered ring. In addition, the 2° carbocation does not rearrange to form a 3° carbocation.

॥

+ - OPP

flexibilene

30.33

30.34
a.

c.

b.

axial OH
d.

equatorial OH
30.35
a.

b.

30.36

Chapter 30-14
30.37

30.38

a. $\mathrm{CH}_{3} \mathrm{COCl}$

b. $\mathrm{H}_{2}, \mathrm{Pd}-\mathrm{C}$

c. \qquad

30.39

30.40 Re-draw the starting material in a conformation that suggests the structure of the product.

Chapter 30-16
30.41

Chapter 31 Synthetic Polymers

Chapter Review

Chain-growth polymers-Addition polymers

[1] Chain-growth polymers with alkene starting materials (31.2)

- General reaction:

- Mechanism-three possibilities, depending on the identity of Z:

Type	Identity of Z	Initiator	Comments
[1] radical polymerization	Z stabilizes a radical. $\mathrm{Z}=\mathrm{R}, \mathrm{Ph}, \mathrm{Cl}$, etc.	A source of radicals (ROOR $)$	Termination occurs by radical coupling or disproportionation. Chain branching occurs.
[2] cationic polymerization	Z stabilizes a carbocation. $\mathrm{Z}=\mathrm{R}, \mathrm{Ph}, \mathrm{OR}$, etc.	$\mathrm{H}-\mathrm{A}$ or a Lewis acid $\left(\mathrm{BF} \mathrm{F}_{3}+\right.$ $\left.\mathrm{H}_{2} \mathrm{O}\right)$	Termination occurs by loss of a proton.
[3] anionic polymerization	Z stabilizes a carbanion. $\mathrm{Z}=\mathrm{Ph}, \mathrm{COOR}, \mathrm{COR}, \mathrm{CN}$, etc.	An organolithium reagent $(\mathrm{R}-\mathrm{Li})$	Termination occurs only when an acid or other electrophile is added.

[2] Chain-growth polymers with epoxide starting materials (31.3)

- The mechanism is $\mathrm{S}_{\mathrm{N}} 2$.
- Ring opening occurs at the less substituted carbon of the epoxide.

Chapter 31-2

Examples of step-growth polymers-Condensation polymers (31.6)
colyamides

Structure and properties

- Polymers prepared from monomers having the general structure $\mathrm{CH}_{2}=\mathrm{CHZ}$ can be isotactic, syndiotactic, or atactic, depending on the identity of Z and the method of preparation (31.4).
- Ziegler-Natta catalysts form polymers without significant branching. Polymers can be isotactic, syndiotactic, or atactic, depending on the catalyst. Polymers prepared from 1,3-dienes have the E or Z configuration, depending on the monomer $(31.4,31.5)$.
- Most polymers contain ordered crystalline regions and less ordered amorphous regions (31.7). The greater the crystallinity, the harder the polymer.
- Elastomers are polymers that stretch and can return to their original shape (31.5).
- Thermoplastics are polymers that can be molded, shaped, and cooled such that the new form is preserved (31.7).
- Thermosetting polymers are composed of complex networks of covalent bonds, so they cannot be melted to form a liquid phase (31.7).

Practice Test on Chapter Review

1. a. Which of the following statements is (are) true about chain-growth polymers?
2. The reaction mechanism involves initiation, propagation, and termination.
3. The reaction may occur with anionic, cationic, or radical intermediates.
4. Epoxides can serve as monomers.
5. Statements [1] and [2] are both true.
6. Statements [1], [2], and [3] are all true.
b. Which of the following alkenes is likely to undergo anionic polymerization?
7. $\mathrm{CH}_{2}=\mathrm{CHCO}_{2} \mathrm{CH}_{3}$
8. $\mathrm{CH}_{2}=\mathrm{CHOCH}_{3}$
9. $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}$
10. Both [1] and [2] will react.
11. Compounds [1], [2], and [3] will all react.
c. Which of the following compounds can serve as an initiator in cationic polymerization?
12. butyllithium
13. $\left(\mathrm{CH}_{3}\right) 3 \mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3}$
14. BF_{3}
15. Both [1] and [2] can serve as initiators.
16. Compounds [1], [2], and [3] can all serve as initiators.
d. Which of the following statements is (are) true about step-growth polymers?
17. A small molecule such as $\mathrm{H}_{2} \mathrm{O}$ or HCl is extruded during synthesis.
18. Polycarbonates are an example of a step-growth polymer.
19. Step-growth polymers are also called addition polymers.
20. Statements [1] and [2] are both true.
21. Statements [1], [2], and [3] are all true.
22. Label each statement as True (T) or False (F).
a. A polyester is the most easily recycled polymer.
b. Natural rubber is a polymer of repeating isoprene units in which all double bonds have the E configuration.
c. A syndiotactic polymer has all Z groups bonded to the polymer chain on the same side.
d. A polyether can be formed by anionic polymerization of an epoxide.
e. An epoxy resin is a chain-growth polymer.
f. A branched polymer is more amorphous, giving it a higher T_{m}.
g. Polystyrene is a thermoplastic that can be melted and molded in shapes that are retained when the polymer is cooled.
h. A polyurethane is a condensation polymer.
i. Ziegler-Natta catalysts are used to form highly branched chain-growth polymers.
j. Using a feedstock from a renewable source is one method of green polymer synthesis.
23. What monomer(s) are needed to synthesize each polymer?
a.

b.

c.

d. $\{$

e.

Chapter 31-4

Answers to Problems
31.1 Place brackets around the repeating unit that creates the polymer.

31.2 Draw each polymer formed by chain-growth polymerization.
a.

c.

b.

d.

31.3 Draw each polymer formed by radical polymerization.
a.

b.

31.4 Use Mechanism 31.1 as a model of radical polymerization.

31.5 Radical polymerization forms a long chain of polystyrene with phenyl groups bonded to every other carbon. To form branches on this polystyrene chain, a radical on a second polymer chain abstracts a H atom. Abstraction of H_{a} forms a resonance-stabilized radical \mathbf{A}^{\prime}. The 2° radical \mathbf{B}^{\prime} (without added resonance stabilization) is formed by abstraction of H_{b}. Abstraction of H_{a} is favored, therefore, and this radical goes on to form products with $4^{\circ} \mathrm{C}$'s (A).

Chapter 31-6
31.6 Cationic polymerization proceeds via a carbocation intermediate. Substrates that form more stable 3° carbocations react more readily in these polymerization reactions than substrates that form less stable 1° carbocations. $\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$ will form a more substituted carbocation than $\mathrm{CH}_{2}=\mathrm{CH}_{2}$.

31.7 Cationic polymerization occurs with alkene monomers having substituents that can stabilize carbocations, such as alkyl groups and other electron-donor groups. Anionic polymerization occurs with alkene monomers having substituents that can stabilize a negative charge, such as COR, COOR, or CN .

31.8 Use Mechanism 31.4 as a model of anionic polymerization.

Initiation:

Propagation:

Termination:

31.9 Styrene $\left(\mathrm{CH}_{2}=\mathrm{CHPh}\right)$ can by polymerized by all three methods of chain-growth polymerization because a benzene ring can stabilize a radical, a carbocation, or a carbanion by resonance delocalization.

31.10 Draw the copolymers formed in each reaction.
a.

b.

31.11

31.12

a.

b.

31.13

31.14

Chapter 31-8

31.15

a.

b.

31.16

31.17

This compound is less suitable than either nylon 6,6 or PET for use in consumer products because esters are more easily hydrolyzed than amides, so this polyester is less stable than the polyamide nylon. This polyester has more flexible chains than PET, and this translates into a less strong fiber.

31.18

31.19

Chapter 31-10
31.20

31.21

31.22 Chemical recycling of HDPE and LDPE is not easily done because these polymers are both long chains of CH_{2} groups joined together in a linear fashion. Since there are only $\mathrm{C}-\mathrm{C}$ bonds and no functional groups in the polymer chain, there are no easy methods to convert the polymers to their monomers. This process is readily accomplished only when the polymer backbone contains hydrolyzable functional groups.
31.23 a. Combustion of polyethylene forms $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$.
b. Combustion of polyethylene terephthalate forms $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$.
c. These reactions are exothermic.
d. HDPE and PET must be separated from poly(vinyl chloride) prior to incineration because combustion of hydrocarbons (like HDPE) and oxygen-containing organics (like PET) releases only $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ into the atmosphere. Poly(vinyl chloride) also contains Cl atoms bonded to a hydrocarbon chain. On combustion this forms HCl , which cannot be released directly into the atmosphere, making incineration of halogen-containing polymers more laborious and more expensive.
31.24

b.

31.25

a.

b.

31.26

a.

b.

31.27
a.

31.28 Draw the polymer formed by chain-growth polymerization as in Answer 31.2.

31.29 Draw the copolymers.
a.

d.

b.

e.

c.

Chapter 31-12
31.30
a.

b.

c.

d.
 and

31.31
a.

b.

c.

d.

31.32 An isotactic polymer has all Z groups on the same side of the carbon backbone. A syndiotactic polymer has the Z groups alternating from one side of the carbon chain to the other. An atactic polymer has the Z groups oriented randomly along the polymer chain.
a.

b.

c.

31.33

31.34

a.

b.

c.

d.

31.35

31.36
a.

b.

Chapter 31-14
31.37

31.38

a. Polyester \mathbf{A} has a lower T_{g} and T_{m} than PET because its polymer chain is more flexible. There are no rigid benzene rings, so the polymer is less ordered.
b. Polyester \mathbf{A} has a lower T_{g} and T_{m} than nylon 6,6 because the $\mathrm{N}-\mathrm{H}$ bonds of nylon 6,6 allow chains to hydrogen bond to each other, which makes the polymer more ordered.
c. The T_{m} for Kevlar would be higher than that of nylon 6,6 , because in addition to extensive hydrogen bonding between chains, each chain contains rigid benzene rings. This results in a more ordered polymer.
31.39

A

dibutyl phthalate

Diester A is often used as a plasticizer in place of dibutyl phthalate because it has a higher molecular weight, giving it a higher boiling point. A should therefore be less volatile than dibutyl phthalate, so it should evaporate from a polymer less readily.

31.40

Propagation:

Repeat Step [3] over and over to form gutta-percha.
Termination:

31.41

31.42

This 2° carbocation is more stable because it is not directly bonded to the electron-withdrawing CN group. As a result, it is more readily formed. Thus, cationic polymerization can occur more readily.

Chapter 31-16
31.43

Initiation:

Termination:

31.44 The substituent on styrene determines whether cationic or anionic polymerization is preferred. When the substituent stabilizes a carbocation, cationic polymerization will occur. When the substituent stabilizes a carbanion, anionic polymerization will occur.
a.

b.

c.

d.

31.45 The rate of anionic polymerization depends on the ability of the substituents on the alkene to stabilize an intermediate carbanion: the better a substituent stabilizes a carbanion, the faster anionic polymerization occurs.

increasing ability to undergo anionic polymerization
31.46 The reason for this selectivity is explained in Figure 9.9. In the ring opening of an unsymmetrical epoxide under acidic conditions, nucleophilic attack occurs at the carbon atom that is more able to accept a δ^{+}in the transition state; that is, nucleophilic attack occurs at the more substituted carbon. The transition state having a δ^{+}on a C with an electrondonating CH_{3} group is more stabilized (lower in energy), permitting a faster reaction.

Repeat Steps [4] and [5] over and over.

31.47

31.48

31.49

a urethane

Chapter 31-18
31.50
a.

b.

c.

d.

e.

${ }^{-} \mathrm{OH}$

f.

g.

h.

i.

j.

31.51 Polyethylene bottles are resistant to NaOH because they are hydrocarbons with no reactive sites. Polyester shirts and nylon stockings both contain functional groups. Nylon contains amides and polyester contains esters, two functional groups that are susceptible to hydrolysis with aqueous NaOH . Thus, the polymers are converted to their monomer starting materials, creating a hole in the garment.
31.52

31.53
a.

Poly(vinyl alcohol) cannot be prepared from vinyl alcohol because vinyl alcohol is not a stable monomer. It is the enol of acetaldehyde $\left(\mathrm{CH}_{3} \mathrm{CHO}\right)$, and thus it can't be converted to poly(vinyl alcohol).
b.

c.

poly(vinyl butyral)
31.54

Chapter 31-20
31.55

or

$$
\xrightarrow{\text { mCPBA }} \stackrel{\mathrm{O}}{\longrightarrow} \xrightarrow{\mathrm{H}_{2} \mathrm{O},-\mathrm{OH}} \mathrm{HO}^{-}
$$

31.56

phenol
Since phenol has no substituents at any ortho or para position, an extensive network of covalent bonds can join the benzene rings together at all ortho and para positions to the OH groups.

Since p-cresol has a CH_{3} group at the para position to the OH group, new bonds can be formed only at two ortho positions, so that a less extensive three-dimensional network can form.
31.57

31.58

31.59

31.60

Chapter 31-22

31.61

a.
 [2]

[3] Repeat
b. Abstraction of the H is more facile than abstraction of the other H's because the H Step [2]. atom that is removed is six atoms from the radical. The transition state for this intramolecular reaction is cyclic, and resembles a six-membered ring, the most stable ring size. Other H's are too far away or the transition state would resemble a smaller, less stable ring.

31.62

[^0]: $+\mathrm{H}_{2}+\mathrm{NaCl}$

